Determination of the stress-strain state of a group of piles by numerical simulation of their interaction with the base according to field research data
Main Article Content
Abstract
Engineers often face the question: - Which software package should be chosen to solve a particular problem? The following software systems are used to solve geotechnical problems: 1) Plaxis; 2) Midas GTS NX; 3) Abaqus; 4) Lira - SAPR. Each of the software packages has certain advantages and disadvantages.
In this study, the software package "Lira - SAPR" and "Midas GTS NX" are used. With the help of which numerical modeling of the interaction of a group of piles with the base was performed, which is described in the experience of Bartolomey A. A. [1].
The stress-strain state was compared, which was obtained using the following variants of the models of the "base - pile foundation" system:
1) software package "Lira-SAPR":
1.1) piles are modeled by single-node finite elements, which are located with a step specified along the length of the pile and have rigidity in different directions and approximately take into account the surrounding soil around the pile and under its tip (FE-57);
1.2) the soil environment is modeled by non-linearly deformable volumetric finite elements; piles - rod finite elements.
2) "Midas GTS NX":
2.1) the soil environment is modeled by non-linearly deformable volumetric finite elements; piles - rod finite elements that have a "virtual" connection with the surrounding soil;
2.2) soil environment - similarly; piles - volumetric finite elements with the parameters of reinforced concrete.
It is shown that the choice of the software package and the method of modeling the base affects the stress-strain state of the "base - pile foundation" system.
Modeling the base using the belt stiffness coefficient leads to a quantitative difference between the obtained results and the field study. This modeling method is the least labor-intensive and fast. The disadvantage of this modeling method is that it is necessary to create a separate model for each stage of the load.
Modeling the base with volumetric finite elements with a nonlinear deformation law will disturb the identification of the design parameters of the base, which is quite laborious. The disadvantage of this modeling method is that it is necessary to control the correctness of the dimensions of the finite elements and their joint work.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Бартоломей А.А. Прогноз осадок свайных фундаментов / А.А.Бартоломей, И.М.Омельчак, Б.С.Юшков. – Москва: Стройиздат, 1994. – 378с.
Бойко І.П. Особливості взаємодії пальових фундаментів під висотними будинками з їх основою. / І.П.Бойко // Основи і фундаменти: Міжвідомчий науково-технічний збірник. – К.: КНУБА. – 2006. – Вип. 30. – С. 3-8.
Носенко В.С. Напружено-деформований стан пальово-плитних фундаментів секційних висотних будинків: дис. ... канд. техн. наук: 05.23.02 / Носенко Віктор Сер-гійович. – К.: КНУБА, 2012. – 175с.
Підлуцький В.Л. Взаємодія фундаментної плити з палями різної довжини з грунтовою багатошаровою основою: дис. ... канд. техн. наук: 05.23.02 / Підлуцький Василь Леонідович. – К.: КНУБА, 2013. – 230с.
Сахаров В.О. Моделювання взаємодії па-льового фундаменту з нелінійною основою в умовах прибудови: дис. ... канд. техн. наук: 05.23.02 / Сахаров Володимир Олександрович. – К.: КНУБА, 2005. – 215 с.
Boyko I.P. Finite element simulation of the loss of stable resistance in a foundation-soil system / I.P. Boyko, V.S. Boyandin, A.E. Delnik, A.L. Kozak, A.S. Sakharov // Archive of Applied Mechanics № 62. – 1992. – р. 316-328.
Городецкий А.С. Компьютерные модели конструкций / А.С. Городецкий, И. Д. Евзеров. – Київ: ФАКТ, 2007. – 392с.
Бойко І.П. Ідентифікація параметрів грунтів на основі результатів натурних випробувань паль / І.П. Бойко, Л.О. Скочко, М.В. Хоронжевський // Основи і фундаменти: Міжвідомчий науково-технічний збірник. – К.: КНУБА. – 2021. – Вип. 42. – С. 9-18.
Boyko I. Interaction of piles in field tests / I.Boyko, V.Pidlutskyi, V.Buriak // 2nd Polish-Ukrainian Geotechnical Scientific Seminar. Planning of experiment project «Pile tests – 2019». – Zielona Góra, Poland. - 9.10.2018.
Bartolomey A.A., Omelchak I.M., Yushkov B.S. (1994). Prohnoz osadok svaynykh fundamentov [Pile foundation settlement forecast]. Moscow. Stroyizdat, 378. (in Russian).
Bоyko I.P. (2006). Osoblyvosti vzaiemodii palovykh fundamentiv pid vysotnymy budynkamy z yikh osnovoiu [Features of the interaction of pile foundations under high-rise buildings with their foundation]. Osnovu i fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNUBA, 30, 3-8 (in Ukrainian).
Nosenko V.S. (2012). Napruzheno-deformovanyj stan paljovo-plytnykh fundamentiv sekcijnykh vysotnykh budynkiv [Stress-strain state of plate-pile foundations of sectional high-rise buildings]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 175 (in Ukrainian).
Pidlutskyi V.L. (2013). Vzayemodiya fundamentnoyi plyty z palyamy riznoyi dovzhyny z gruntovoyu bagatosharovoyu osnovoyu [Interaction of a base plate with piles of different lengths with a soil multilayer basis]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 230 (in Ukrainian).
Sakharov V.O. (2005). Modelyuvannya vzayemodiyi paljovogo fundamentu z nelinijnoyu osnovoyu v umovakh prybudovy [Modeling of the interaction of a pile foundation with a nonlinear basis in the conditions of an extension]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 215 (in Ukrainian).
Boyko I.P., Boyandin V.S., Delnik A.E., Kozak A.L., Sakharov A.S. (1992). Finite element simulation of the loss of stable resistance in a foundation-soil system. Archive of Applied Mechanics, 62, 316-328.
Gorodetskiy A.S. (2007). Komp'yuternyye modeli konstruktsiy [Computer models of constructions]. Kyiv, FAKT, 392 (in Ukrainian)/
Boyko I.P., Skochko L.O., Khoronzhevskyi M.V. (2021). Vyznachennya parametriv gruntu za rezulʹtatamy polʹovykh vyprobuvanʹ palʹ [Identification of soil parameters based on the results of field tests of piles]. Osnovu i fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNUBA, 42, 9-18 (in Ukrainian).
Boyko I., Pidlutskyi V., Buriak V. (2019). Interaction of piles in field tests. 2nd Polish-Ukrainian Geotechnical Scientific Seminar. Planning of experiment project «Pile tests – 2019». Zielona Góra, Poland. 9.10.2018.