The influence of the rigidity of the joints of the panel house on the stress-deformed state of the foundation structures

Main Article Content

Viktor Nosenko
Ostap Kashoida

Abstract

The work compares the stress-deformed states of the pile foundations of the house depending on the method of modeling the joints of the wall panels.


The use of wall panels is due to the fact that their installation is a relatively fast technological process, but the disadvantage of such buildings is, among other things, the lack of free spatial planning [1]. During the creation of a numerical model, questions arise: what method (type of connection of panel elements to each other) should be used to model the joints of prefabricated reinforced concrete structures and how does this affect the stress-strain state in above-ground structures and foundations?


This paper presents the influence of the adopted decision (chosen method of joint modeling) on the stress-strain state of pile foundations.


A comparison was made of the stress-strain state of the pile foundation (piles and grid), which were obtained using the following joint modeling options:


1) reinforced concrete elements: monolithic floor, monolithic staircase-elevator shaft and prefabricated wall panels are rigidly connected to each other.


2) the joints between reinforced concrete elements are made using the principle of "combination of movements", i.e., the nodes of the finite elements of the structures are stitched and interact with each other on the basis of certain parameters: horizontal joints - only vertical movements are taken into account (combination movements in the HSC along the Z axis); vertical – take into account movement only in the horizontal plane (along the X and Y axes, in GCS);


3) joints between reinforced concrete elements are made using the functionality of PC "Sapphire". Horizontal joints take into account filling with solution (the so-called platform joint), the behavior of which is described by the elastic law of deformation. Vertical joints take into account embedded details, with the help of which elements are connected to each other in the corresponding places foreseen by the project.


It is shown that the choice of modeling option for the joint of reinforced concrete structures affects the VAT not only of the foundation structures, but also of the vertical load-bearing elements of the building (wall panels and monolithic structures of the stair-elevator shaft). When using various joint modeling options, it is possible to obtain quantitative differences in forces from 2 to 20%, and the type of joint practically does not affect the deformation of foundation structures.

Article Details

How to Cite
Nosenko, V., & Kashoida, O. (2022). The influence of the rigidity of the joints of the panel house on the stress-deformed state of the foundation structures. Bases and Foundations, (44), 9–18. https://doi.org/10.32347/0475-1132.44.2022.9-18
Section
Статті
Author Biographies

Viktor Nosenko, Kyiv National University of Construction and Architecture

Associate Professor of the Department of Geotechnics, Ph.D.

Ostap Kashoida, Kyiv National University of Construction and Architecture

postgraduate of the Department of Geotechnics

References

Носенко В.С. Вплив жорсткості несучих конструкцій будинку зі збірного залізобе-тону на напружено-деформований стан фундаментів із буроін’єкційних паль. / В.С. Носенко, О.А. Кривенко // Основи і фундаменти: Науково-технічний збірник. – К.: КНУБА. – 2020. – Вип. 40. – С. 48-57.

ДБН В.2.6-198:2014. Сталеві конструкції. Норми проектування / Мінрегіон України – Київ, 2014. – 206с.

Boyko I.P. Finite element simulation of the loss of stable resistance in a foundation-soil system / I.P. Boyko, V.S. Boyandin, A.E. Delnik, A.L. Kozak, A.S. Sakharov // Archive of Applied Mechanics № 62. – 1992. – р. 316-328.

Городецкий А.С. Компьютерные модели конструкций / А.С. Городецкий, И. Д. Евзеров. – Київ: ФАКТ, 2007. – 392с.

Носенко В.С. Напружено-деформований стан пальово-плитних фундаментів сек-ційних висотних будинків: дис. ... канд. техн. наук: 05.23.02 / Носенко Віктор Сер-гійович. – К.: КНУБА, 2012. – 175с.

Підлуцький В.Л. Взаємодія фундаментної плити з палями різної довжини з грунто-вою багатошаровою основою: дис. ... канд. техн. наук: 05.23.02 / Підлуцький Василь Леонідович. – К.: КНУБА, 2013. – 230с.

Сахаров В.О. Моделювання взаємодії па-льового фундаменту з нелінійною осно-вою в умовах прибудови: дис. ... канд. техн. наук: 05.23.02 / Сахаров Володимир Олександрович. – К.: КНУБА, 2005. – 215 с.

Antone F. Analysis of linear structures on nonlinear pile foundations. / Antone F. Sayegh, Frank K. Tso. // Computers and Structures. - 1988. - No. 29 (4). – P. 633 - 643.

Гоцуляк Є.О. Розрахунок осадки і несучої здатності паль при їх взаємодії в плитно-му фундаменті. / Є.О. Гоцуляк, М.В. Корнієнко, А.М. Шельменко // Опір матеріалів і теорія споруд. - 2010. – No. 86 (2010). – С. 124 - 130.

Sandy H.L. Cheen, Xinliu Wu. The value range of contact stiffness factor between pile and soil based on penalty function. - IOP Conf. Series: Earth and Environmental Science (ICEESE). - 2018. – No. 128 (2018).

Nosenko V.S., Krivenko O.A. (2020). Vplyv zhorstkosti nesuchykh konstruktsiy budynku zi zbirnoho zalizobetonu na napruzheno-deformovanyy stan fundamentiv iz buroinʺyektsiynykh palʹ [The influence of the stiffness of the load-bearing structures of the house made of precast concrete on the stress-deformed state of the foundations made of bored-injection piles]. Osnovu i fundamenty: naukovo-tekhnichnyj zbirnyk. Kyiv: KNUBA, 40, 48-57 (in Ukrainian).

DBN [state building regulations] В.2.6-198:2014. Stalevi konstruktsiyi. Normy proektuvannya [Steel structures. Design standards] / Minrehion Ukrayiny – Kyiv, 2014. – 206p (in Ukrainian).

Boyko I.P., Boyandin V.S., Delnik A.E., Kozak A.L., Sakharov A.S. (1992). Finite element simulation of the loss of stable resistance in a foundation-soil system. Archive of Applied Mechanics, 62, 316-328.

Gorodetskiy A.S. (2007). Kompiuternye modely konstruktsyi [Computer models of structures]. Kyiv, FAKT, 392 (in Russian).

Nosenko V.S. (2012). Napruzheno-deformovanyj stan paljovo-plytnykh fundamentiv sekcijnykh vysotnykh budynkiv [Stress-strain state of plate-pile foundations of sectional high-rise buildings]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 175 (in Ukrainian).

Pidlutskyi V.L. (2013). Vzayemodiya fundamentnoyi plyty z palyamy riznoyi dovzhyny z gruntovoyu bagatosharovoyu osnovoyu [Interaction of a base plate with piles of different lengths with a soil multilayer basis]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 230 (in Ukrainian).

Sakharov V.O. (2005). Modelyuvannya vzayemodiyi paljovogo fundamentu z nelinijnoyu osnovoyu v umovakh prybudovy [Modeling of the interaction of a pile foundation with a nonlinear basis in the conditions of an extension]. Dys. kand. tekhn. nauk: 05.23.02. Kyiv: KNUBA, 215 (in Ukrainian).

Antone F. Sayegh, Frank K. Tso. (1988). Analysis of linear structures on nonlinear pile foundations. Computers and Structures. 29 (4). 633-643.

Gotsulyak E.O., Kornienko M.V., Shelmenko A.M. (2010). Rozrakhunok osadky i nesuchoyi zdatnosti palʹ pry yikh vzayemodiyi v plytnomu fundamenti [Calculation of settlement and bearing capacity of piles with their support in a slab foundation]. Resistance of materials and theory of structures. No. 86 (2010). 124 - 130.

Sandy H. L. Cheen, Xinliu Wu. (2018). The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function. IOP Conf. Series: Earth and Environmental Science (ICEESE). 128 (2018).