Use of 2D and 3D modeling to assess the stress-strain state of retaining walls of complex configurations
Main Article Content
Abstract
A comparison of the calculation results of the foundation pit enclosure made of flexible retaining walls is presented. Calculations were performed by the method of numerical modeling using Plaxis PC software, which is based on the finite element method. This task was implemented in three-dimensional (3D) and flat (2D) formulations of the problem, which provides more opportunities for a comprehensive assessment of the stress-strain state (SSS) of the elements of the "soil massif - anti-landslide structures" system when using complex configurations retaining walls.
Calculations were performed within three calculation sections for different stages of construction: 1st stage – the initial faze (formation of the soil massif in its natural state), 2nd stage – excavation of the first layer of the pit, 3rd stage – excavation of the second layer of the pit. Based on the results of the calculations, the SSS analysis of the elements of the "soil massif - anti-landslide structures" system was carried out and the reinforcement of the retaining walls was selected. An assessment of the slope stability was also performed at the stage of full excavation of the foundation pit.
It is shown that the advantage of using a plane FEM to assess the stress-strain state in the anti-slide structures is a much smaller amount of time spent on calculations and ease of understanding, but the disadvantage of this method is the lack of the possibility of taking into account the spatial stiffness of structures. It has been demonstrated that the use of spatial FEM allows taking into account the spatial stiffness of structures, which in the future makes it possible to more effectively design the retaining walls structures, however, modeling using this method is quite labor-intensive and requires significant resources of computer equipment for making calculations.
According to the results of the calculations, the displacements obtained in the calculation using 2D modeling are on 6-43% more than using 3D modeling, the bending moments are on 12-33% more.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Носенко В.С. Оцінка стійкості схилу з ви-користанням різних розрахункових мето-дів. / Носенко В.С., Скочко Л.О., Маламан А.Р. // Науково-технічний збірник «Основи і фундаменти». – К.: КНУБА. – 2021. – Вип. 43. – С.40-51. DOI: 10.32347/0475-1132.43.2021.40-51
Біда С.В. Оцінювання стійкості схилів річ-кових долин Полтавського лесового пла-то. / Біда С.В., Куц О.В. // Вісник Дніпро-петровського університету. Серія: геоло-гія, географія. – Дніпро: ДНУ ім. О. Гон-чара – 2016. – Вип. 24(1) – С.13-19. DOI: 10.15421/ 111602.
Зоценко М.Л. Моделювання напружено-деформованого стану зсувного схилу. / Зоценко М.Л., Винников Ю.Л., Харченко М.О., Марченко В.І., Виноградова А.М., Костенко В.О., Титаренко В.А. // Збірник наукових праць (галузеве машинобудуван-ня, будівництво). – Полтава: ПолтНТУ, – 2013. – Вип. 3(38). Том 1. – C.160-196.
Kondner R. L. Hyperbolic stress strain re-sponse: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. USA. – 1963. – 89. P.115–144.
Duncan J. M. Nonlinear analysis of stress and strain in soils. / Duncan J. M., Chang C.-Y. // ASCE Journal of the Soil Mechanics and Foundations Division. – USA. – 1970. – 96. P.1629-1653.
Janbu N. Slope stability computation. Em-bankment-Dam Engineering. Casagtande volume. 1973 USA. – P.47-86.
Schanz T. The Hardening Soil Model: Formu-lation and verification. / Schanz T., Vermeer P. A. // Beyond 2000 in Computational Ge-otechnics. Balkema. Rotterdam. – 1999. – 1. P.281-290.
Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. – 1962. London. – 269. P.500-527.
Schanz T. Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Mitt. Inst. für Geotechnik. Stuttgart. – 1998. – 45. P.152.
Настанова з проектування підпірних стін. ДСТУ-Н Б В.2.1-31:2014. – К.: Мінрегіон України, 2015. – 54с.
Nosenko V.S., Skochko L.O., Malaman A.R. (2021). Otsinka stiykosti shilu z vikoristannyam riznih rozrahunkovih metodiv. [Comparative assessment of the slope stability using different calculation methods]. Naukovo-tehnichniy zbirnik «Os-novi i fundamenti». Kyiv: KNUBA, 43, 40-51 (in Ukrainian). DOI: 10.32347/0475-1132.43.2021.40-51
Bіda S.V., Kuts O.V. (2016). Otsіnyuvannya stsykosti shiliv richkovih dolin Poltavskogo lesovogo plato. [The evaluation of slopes stability of Poltava river valleys loess plat-eau]. Visnik Dnipropetrovskogo universitetu. Seriya: geologiya, geografiya. Dnipro: DNU, 24(1), 13-19 (in Ukrainian). DOI: 10.15421/111602.
Zotsenko M.L., Vinnikov Yu.L., Harchenko M.O., Marchenko V.I., Vinogradova A.M., Kos-tenko V.O., Titarenko V.A. (2013). Modelyuvannya na-pruzheno-deformovanogo stanu zsuvnogo shilu. [Sim-ulation of the stressed-deformed state of soil massif of landslide slope]. Zbіrnik naukovih prats (galuzeve mashinobu-duvannya, budivnitstvo). Poltava: PoltNTU, 3(38), 160-169 (in Ukrainian).
Kondner R. L. (1963). Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Divi-sion. 89, 115–144.
Duncan J. M., Chang C.-Y. (1970). Nonlinear analysis of stress and strain in soils. ASCE Journal of the Soil Mechanics and Founda-tions Division. 96, 1629–1653.
Janbu N. (1973). Slope stability computation. Embankment-Dam Engineering. Casagtande volume, 47–86.
Schanz T., Vermeer P. A., Bonnier P. G. (1999). The Hardening Soil Model: Formula-tion and verification. Beyond 2000 in Com-putational Geotechnics. Balkema. Rotter-dam, 1, 281–290.
Rowe P.W. (1962). The stress-dilatancy rela-tion for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 269, 500–527.
Schanz T. (1998). Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. [On modeling the me-chanical behavior of friction materials]. Mitt. University of Stuttgart, 152 (in German).
Nastanova z proektuvannya pidpirnykh stin DSTU-N B B.2.1-31:2014. (2015). [Guidelines for the design of retaining walls]. Kyiv: Minregion Ukrayiny, 54 (in Ukraini-an).