Serviceability analysis of the grain storage facilities foundations
Main Article Content
Abstract
The change in the stress-strain state is analyzed on the example of a complex underground part of silo "loess soil base – foundation strip – undersilo tunnel gallery – compacted soil base – bottom silo slab" system as an indicator for assessing the serviceability of this type of industrial structure.
Based on the analysis of existing design documentation and field surveys, the main stages of the structure's operation during its construction and subsequent operation have been identified. Finite element analysis was performed to evaluate the current technical condition of the system of bases and foundations. At the same time, the results of geodetic measurements over time were additionally used to obtain the actual stress-strain mode of the system according to the deformed scheme.
The paper focuses on the nature of the mutual influence of individual elements of the complex foundation system. The study highlights the characteristic changes in the structural scheme and the peculiarities of stress redistribution within the system at different stages of operation. Has been taken into account local soaking of the loess soil with a thickness of up to 7.2 m that was typical for the full-scale experimental object.
Particularly, the forces in the reinforced concrete members of the underground tunnel gallery of the silo have been determined. The influence of changes in the stress-strain mode of the foundation system on their operation under variable loads and impacts has been taken into account.
It has been established that the design of such complex systems still requires further research on the design schemes and situations. When designing complex foundation systems of silo, a common mistake is to incorrectly take into account the stiffness of the underground tunnel gallery, backfill under the bottom slab, and locally locked loess soils under the foundation strip. These factors have a significant impact on the overall level of reliability and faultless operation of the industrial structure as a whole.
It is also shown that it is necessary to take into account the influence of adjacent silos and the factor of asymmetry of the foundation along and across the underground gallery.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Carson J. Silo failures: why do they happen? / J. Carson, T. Holmes // Task Quarterly. 2003-7(4). – pp. 499-512.
Dutta A. Study of Types of Failures in Silos / A. Dutta // GRA - Global research analysis. 2013. ISSN No 2277-8160. – pp. 41-43. doi: 10.36106/GJRA.
Дворник А.М. Основи та фундаменти циліндричних силосів для зерна / А.М. Дворник, І.Г. Любченко, В.А. Титаренко, О.В. Шидловська // Наука та будівництво. – 2019. – №3. – С. 12-18.
Мозговий А.О. Особливості конструкцій залізобетонних фундаментів силосів збільшених розмірів / А.О. Мозговий, А.А. Бутенко // Збірник наук. пр. [УкрДУ-ЗТ]. Сер.: Будівництво та цивільна інженерія. – 2022. – Вип. 199. – С. 54-67.
Винников Ю.Л. Проблеми визначення модуля деформації замоклих лесоподібних ґрунтів / Ю.Л. Винников // Зб. наук. праць (галузеве машинобуд., буд-во)/ Полт. нац. техн. ун-т ім. Юрія Кондратюка. Вип. 3 (28). – Полтава: ПНТУ, 2010. – С. 62-68.
Зоценко М.Л. Особливості визначення осідань основ плитних фундаментів зерносховищ силосного типу / М.Л. Зоценко, Ю.Л. Винников, С.Ф. Пічугін, М.В. Бібік, В.І. Марченко, М.І. Лапін // Зб. наук. Праць (галузеве машинобуд., буд-во). – Полтава: ПНТУ, 2009. – Вип. 2 (27). – С. 101-110.
Винников Ю.Л. Розрахунок фундаментної плити силосів на армованій стохастичній основі / Ю.Л. Винников, М.О. Харченко, В.І. Марченко // Мости та тунелі: теорія, дослідження, практика. – Дніпро: ДНУЗТ, 2012.– Вип. 3. – С. 26 – 32.
Dhaybi M. Foundations reinforced by soil mixing: Physical and numerical approach / M. Dhaybi, A. Grzyb, R. Trunfio, F. Pellet // Proc. of Intern. Symp. “Recent research, advances & execution aspects of ground im-provement works”. – Brussels 2012 – vol. 3 pp. 137-145.
Марченко В.І. Напружено-деформований стан армованих за бурозмішувальною технологією слабких глинистих основ з урахуванням чиннику часу: дис. ... канд. техн. наук: 05.23.02 / Марченко Валентин Іванович. – Полтава: ПолтНТУ, 2012. – 230 с.
Підлуцький В.Л. Формування НДС у фундаментах зерносушильних комплексів при зміні параметрів грунтів / В.Л. Підлуцький, О.В. Литвин // Основи та фундаменти: Міжвід. наук.техн. збірник. – К.: КНУБА. – 2020. – Вип. 41. – С. 55-63.
Calvello M. Selecting parameters to optimize in model calibration by inverse analysis / M. Calvello, R.J. Finno // Computers and Geotechnics. – Evanston: Northwestern University, 2004. – 31(5), pp. 411-425. doi:10.1016/j.compgeo.2004.03.004.
Носенко В. Визначення напружено-деформованого стану групи паль шляхом числового моделювання їх взаємодії з основою за даними польових досліджень / В. Носенко, О. Кашоїда // Основи та фундаменти: Міжвід. наук.-техн. збірник. – К.: КНУБА. – 2021. – Вип. 43. – С. 87-100.
Бойко І.П. Ідентифікація параметрів грунтів на основі результатів натурних випробувань паль / І.П. Бойко, Л.О. Скочко, М.В. Хоронжевський // Основи і фундаменти: Міжвід. наук.техн. збірник. – К.: КНУБА. – 2021. – Вип. 42. – С. 9-18.
Luo Z. Influence of site sampling plan on differential shallow foundation settlement prediction using conditional-random-field-based finite element method / Z. Luo, N. Luo, B. Das // Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. – Sydney: Australian Geomechanics Society. – 2022. – p. 4583-4587.
Ching J. Is the scale of fluctuation the only important parameter in geotechnical spatial variability? / J. Ching // Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. – Sydney: Australian Geomechanics Society. – 2022. – p. 4531-4536.
Dareeju B. Probabilistic modelling of shear strength parameters for tailings dam design / B. Dareeju, T. Rowles, Y. Xu // Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. – Sydney: Australian Geomechanics Society. – 2022. – p. 4537-4541.
ДБН В.2.1-10:2018. Основи і фундаменти будівель та споруд. – К.: Мінрегіонбуд, 2018. – 40 с.
Carson J., Holmes T. (2003). Silo failures: why do they happen? Task Quarterly. 7(4), 499-512.
Dutta A. (2013). Study of Types of Failures in Silos. Global research analysis. Nov. 2013. ISSN No 2277-8160, 41-43. doi: 10.36106/GJRA.
Dvornyk A.M., Liubchenko I.H., Tytarenko V.A., Shydlovska O.V. (2019). Osnovy ta fundamenty tsylindrychnykh sylosiv dlia zerna [Bases and foundations for grain cylindrical silos]. Nauka ta budivnytstvo. Kyiv: NDIBK, 3, 12-18 (in Ukrainian).
Mozghovyi A.O., Butenko A.A. (2022). Osoblyvosti konstruktsii zalizobetonnykh fundamentiv sylosiv zbilshenykh rozmiriv [The effective structures of reinforced concrete foundation of syloses at grain transfer terminals]. Zbirnyk nauk. prats: Budivnytstvo ta tsyvilna inzheneriia. UkrDUZT, 199, 54-67 (in Ukrainian).
Vynnykov Yu.L. (2010). Problemy vyznachennia modulia deformatsii zamoklykh lesopodibnykh gruntiv [Problems of determining the modulus of deformation of dense loess soils]. Zb. nauk. prats (haluzeve mashynobud., bud-vo). Poltava: PNTU, 3(28), 62-68 (in Ukrainian).
Zotsenko M.L., Vynnykov Yu.L., Pichuhin S.F., Bibik M.V., Marchenko V.I., Lapin M.I. (2009). Osoblyvosti vyznachennia osidan osnov plytnykh fundamentiv zernoskhovyshch sylosnoho typu [The comparison results of determination of settlement of poor-bearing clay bases of slab foundation of the granary of silo type the method of layer-by-layer summing up and modeling by method of ultimate elements with dates of geodetic observation after total stress of the silos are presented]. Zb. nauk. Prats (haluzeve mashynobud., bud-vo). Poltava: PNTU, 4(27), 101-110 (in Ukrainian).
Vynnykov Yu.L., Kharchenko M.O., Marchenko V.I. (2012). Rozrakhunok fundamentnoi plyty sylosiv na armovanii stokhastychnii osnovi [Design of foundation plate of grain silage on reinforced stochastic soil base]. Mosty ta tuneli: teoriia, doslidzhennia, praktyka. Dnipro: DNUZT, 3, 26-32 (in Ukrainian).
Dhaybi M., Grzyb A., Trunfio R., Pellet F. (2012). Foundations reinforced by soil mixing: Physical and numerical approach. Proc. of Intern. Symp. “Recent research, advances & execution aspects of ground improvement works”. Brussels, 3, 137-145.
Marchenko V.I. (2012). Napruzheno-deformovanyi stan armovanykh za burozmishuvalnoiu tekhnolohiieiu slabkykh hlynystykh osnov z urakhuvanniam chynnyku chasu [The stress-stain state of weak clay bases reinforced by drilling-mixing technology, taking into account the time factor]. Dys. kand. tekhn. nauk: 05.23.02. Poltava: PoltNTU, 230 (in Ukrainian).
Pidlutskyi V.L., Lytvyn O.V. (2020). Formuvannia NDS u fundamentakh zerno-sushylnykh kompleksiv pry zmini parametriv hruntiv [Formation of stress-strain state in the foundations of grain drying complexes when changing soil parameters]. Osnovy ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyi zbirnyk. Kyiv: KNUBA, 41, 55-63 (in Ukrainian).
Calvello M., Finno R.J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Ge-otechnics. Evanston: Northwestern University, 31(5), 411–425.
Nosenko V., Kashoida O. (2021). Vyznachennia napryjeno-deformovanogo stany grypi pal shliahom chislovogo modeli-yvannia ih vzaiemodii z osnovoiy za dannimi poliovih doslidjen [Determination of the stress-strain state of group of piles by numerical simulation of their interaction with the base according to field research data]. Osnovu ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNU-BA, 43, 87-100 (in Ukrainian).
Boyko I.P., Skochko L.O., Khoronzhevskyi M.V. (2021). Vyznachennya parametriv gruntu za rezulʹtatamy polʹovykh vyprobuvanʹ palʹ [Identification of soil parameters based on the results of field tests of piles]. Osnovu i fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNU-BA, 42, 9-18 (in Ukrainian).
Luo Z., Luo N., Das B. (2022). Influence of site sampling plan on differential shallow foundation settlement prediction using conditional-random-field-based finite element method. Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society, 4583-4587.
Ching J. (2022). Is the scale of fluctuation the only important parameter in geotechnical spatial variability? Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society, 4531-4536.
Dareeju B., Rowles T., Xu Y. (2022). Probabilistic modelling of shear strength parameters for tailings dam design. Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society, 4537-4541.
DBN V.2.1-10:2018. (2018). Osnovy i fundamenty budivel ta sporud. Kyiv: Minrehionbud, 40 (in Ukrainian).