The choice of optimal parameters of the retaining wall of the pit enclosure in conditions of dense construction, taking into account its spatial rigidity

Main Article Content

Viktor Nosenko
Artur Malaman

Abstract

The results of the study of the interaction of the pit enclosure made of flexible retaining walls, arranged in the conditions of dense construction, with the soil foundation are presented.


Calculations were carried out by the method of numerical modeling, using the Plaxis software complex. The modeling is performed in a three-dimensional space, which provides an opportunity for a comprehensive assessment of the stress-strain state (SSS) of the elements of the system "soil array - retaining walls - structures of existing buildings" when using complex configurations of retaining walls and taking into account the factor of their spatial stiffness.


For the analysis of the results, 4 characteristic sections were chosen. Modeling was performed taking into account the following stages:


1) the initialization stage (formation of the soil massif in its natural state);


2) installation of a retaining wall;


3) alternate development of the pit to the design mark;


4) load from the building at the stage of operation.


Based on the results of the calculations, the SSS analysis of the elements of the system "soil massif - retaining walls - structures of existing buildings" was performed, and the reinforcement of the retaining walls was selected, and the costs of the main materials were determined.


It is shown that taking into account the spatial stiffness of the retaining wall of the pit enclosure makes it possible to more effectively estimate the SSS of the retaining wall structure, more correctly estimate the additional deformations of neighboring buildings, due to taking into account the change in the stiffness of the retaining wall of a complex configuration, and therefore, in the future, to more effectively design the constructions of retaining walls.


According to the results of the calculations, it is shown that retaining walls made in 2 rows in a staggered order, with piles with a diameter of 420 mm, have greater rigidity than retaining walls made in 1 row with piles with a diameter of 620 mm. Therefore, in order to reduce additional subsidence of neighboring buildings and reduce horizontal movements of the retaining wall, the option of the retaining wall made by placing piles in a staggered order is a priority in conditions of dense construction.


Armature costs for option 1 are 46% higher compared to option 2. These results indicate that the 2nd option of installing a retaining wall is a more economical solution, however, in conditions of dense construction, its use is limited, since the settlement of neighboring buildings in this case will be greater, due to the lower rigidity of the retaining wall.

Article Details

How to Cite
Nosenko, V., & Malaman, A. (2023). The choice of optimal parameters of the retaining wall of the pit enclosure in conditions of dense construction, taking into account its spatial rigidity. Bases and Foundations, (46), 141–152. https://doi.org/10.32347/0475-1132.46.2023.141-152
Section
Статті
Author Biographies

Viktor Nosenko, Kyiv National University of Construction and Architecture

Head of the Department of Geotechnics
Ph.D.
Associate Professor

Artur Malaman, Kyiv National University of Construction and Architecture

postgraduate of the Department of Geotechnics

References

Блащук Н.В. Моделювання впливу влаштування глибокого котловану складної форми на поряд розташовані будинки / Блащук Н.В., Маєвська І.В., Губашова В.Є. // Збірник наукових праць «Сучасні технології, матеріали і конструкції в будівництві». – Вінниця: ВНТУ. – 2022. – Том 33. №2. – С.132-141. DOI 10.31649/2311-1429-2022-2-132-141

Бондарева Л.О. Використання 2D та 3D моделювання для оцінки напружено-деформованого стану підпірних стін складних конфігурацій / Бондарева Л.О., Носенко В.С., Маламан А.Р. // Науково-технічний збірник «Основи та фундаменти». – К.: КНУБА. – 2022. – Вип. 45. – С.9-21. DOI: 10.32347/0475-1132.45.2022.9-21

Бойко І.П. Вплив фундаментів будинку на напружено-деформований стан утримуючих конструкцій / Бойко І.П., Ручківський В.В., // Науково-технічний збірник «Основи та фундаменти». – К.: КНУБА. – 2019. – Вип. 38. – С.9-15. DOI: 10.32347/0475-1132.38.2019.9-15.

Зоценко М.Л. Моделювання напружено-деформованого стану зсувного схилу. / Зоценко М.Л., Винников Ю.Л., Харченко М.О., Марченко В.І., Виноградова А.М., Костенко В.О., Титаренко В.А. // Збірник наукових праць [Полтавського національного технічного університету ім. Ю. Кондратюка]. Сер. : Галузеве машинобудування, будівництво. – Полтава: ПолтНТУ, – 2013. – Вип. 3(38). Том 1. – C.160-196.

Ручківський В.В. Напружено-деформований стан підпірних стін в залежності від їх конструкцій / Ручківський В.В. // Науково-технічний збірник «Основи та фундаменти». – К.: КНУБА. – 2020. – Вип. 40. – С.76-82. DOI: 10.32347/0475-1132.40.2020.76-82

Kondner R. L. Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. USA. – 1963. – 89. P.115–144.

Duncan J. M. Nonlinear analysis of stress and strain in soils. / Duncan J. M., Chang C.-Y. // ASCE Journal of the Soil Mechanics and Foundations Division. – USA. – 1970. – 96. P.1629-1653.

Schanz T. The Hardening Soil Model: Formulation and verification. / Schanz T., Vermeer P. A. // Beyond 2000 in Computational Geotechnics. Balkema. Rotterdam. – 1999. – 1. P.281-290.

Dr. Ir. Gouw Tjie Liong. Common mistakes on the application of Plaxis 2D in analyzing excavation problems // International Journal of Applied Engineering Research, Volume 9, Number 21 (2014) – Reaserch India Publications, 2014 – C. 8291-8311.

J. Pruška. Comparison of geotechnic softwares - Geo FEM, Plaxis, Z-Soil. // XIIIth European Conference on soil mechanics and geotechnical engineering. Geotechnical problems with man-made and influenced grounds. 25-28th August 2003. Prague. Czech Republic – Prague, 2003 – c. 819-824.

Blashchuk N.V., Maievska I.V., Hubashova V.I. (2022). Modeliuvannia vplyvu vlashtuvannia hlybokoho kotlovanu skladnoi formy na poriad roztashovani budynky. [Simulation of the influence of the device of a deep pit of complex shapes on nearby located houses]. Naukovo-tehnichniy zbirnik «Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi». Vinnytsia: VNTU, 33(2), 132-141 (in Ukrainian). DOI 10.31649/2311-1429-2022-2-132-141

Bondareva L.O., Nosenko V.S., Malaman A.R. (2022). Vykorystannia 2D ta 3D modeliuvannia dlia otsinky napruzheno-deformovanoho stanu pidpirnykh stin skladnykh konfihuratsii. [Use of 2D and 3D modeling to assess the stress-strain state of retaining walls of complex configurations]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 45, 9-21 (in Ukrainian). DOI: 10.32347/0475-1132.45.2022.9-21

Boyko I.P., Ruchkivskyi V.V. (2019). Vplyv fundamentiv budynku na napruzheno-deformovanyi stan utrymuiuchykh konstruktsii. [Influence of the building foundations on the stress-strain state of the retaining structures]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 38, 9-15 (in Ukrainian). DOI: 10.32347/0475-1132.38.2019.9-15

Zotsenko M.L., Vinnikov Yu.L., Harchenko M.O., Marchenko V.I., Vinogradova A.M., Kos-tenko V.O., Titarenko V.A. (2013). Modelyuvannya na-pruzheno-deformovanogo stanu zsuvnogo shilu. [Simulation of the stressed-deformed state of soil massif of landslide slope]. Zbіrnik naukovih prats (galuzeve mashinobuduvannya, budivnitstvo). Poltava: PoltNTU, 3(38), 160-169 (in Ukrainian).

Ruchkivskyi V.V. (2020). Napruzheno-deformovanyi stan pidpirnykh stin v zalezhnosti vid yikh konstruktsii. [Stress-strain state of retaining walls depending on them construction]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 40, 76-82 (in Ukrainian). DOI: 10.32347/0475-1132.40.2020.76-82

Kondner R. L. (1963). Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. 89, 115–144.

Duncan J. M., Chang C.-Y. (1970). Nonlinear analysis of stress and strain in soils. ASCE Journal of the Soil Mechanics and Foundations Division. 96, 1629–1653.

Schanz T., Vermeer P. A., Bonnier P. G. (1999). The Hardening Soil Model: Formulation and verification. Beyond 2000 in Computational Geotechnics. Balkema. Rotterdam, 1, 281–290.

Dr. Ir. Gouw Tjie Liong. (2014). Common mistakes on the application of Plaxis 2D in analyzing excavation problems. International Journal of Applied Engineering Research, Volume 9, Number 21 (2014). Reaserch India Publications, C. 8291-8311.

J. Pruška. (2003). Comparison of geotechnic softwares - Geo FEM, Plaxis, Z-Soil. XIIIth European Conference on soil mechanics and geotechnical engineering. Geotechnical problems with man-made and influenced grounds. 25-28th August 2003. Prague. Czech Republic, Prague, 819-824.