Assessment of the reasons for the loss of stability of the retaining wall and the choice of slope stabilization options, taking into account the use of retaining walls of different rigidity
Main Article Content
Abstract
An assessment of the reasons for the loss of stability of the sliding slope and the manifestation of significant movements of the existing retaining walls is presented, as well as the selection of measures to stabilize the slope by installing one of the variants of retaining walls of different rigidity is performed.
To assess the stability of the slope and select the effective parameters of the retaining walls, a numerical simulation of the stress-strain state (SSS) of the elements "soil massif of the slope - retaining walls" was performed. Modeling was carried out by the method of finite elements using the "Plaxis" software complex in a non-linear setting, taking into account changes in the parameters of structures and soils at different stages of modeling.
An assessment of the real movements of the retaining walls and the reasons for the loss of slope stability at the initial stage was carried out using geodetic monitoring.
A characteristic engineering-geological section in the zone of the greatest deformations of the existing anti-slide structures was chosen for modeling the calculation scheme.
Numerical calculations of the retaining walls, which were carried out using the finite element method, involve taking into account the technological sequence of the construction of the retaining walls and modeling the step-by-step development of the pit. Modeling was performed in several stages:
1) Formation of soil SSS in the current natural state;
2) Assessment of the stability of the slope before the start of construction, in the presence of an old massive retaining wall made of limestone blocks.
3) Assessment of the stability of the slope in the version of the original design solution with a retaining wall made of short bored piles with a diameter of 820 mm and taking into account the development of the pit to the design mark.
4) Modeling of SSS elements "soil array of the slope - retaining walls" with different options of the new retaining wall in order to choose an effective option that will ensure the possibility of developing the pit to the design marks and stabilizing the slope.
Based on the results of numerical modeling of slope stabilization options with retaining walls of different designs and rigidity, the consumption of materials for each of the options was determined and the most effective option was selected.
Studies have shown that depending on the change in the spatial rigidity of the retaining walls by introducing additional elements (buttresses, struts) it is possible to obtain an optimal solution and, in the future, to effectively design a complex of anti-landslide structures.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Бондарева Л.О. Використання 2D та 3D моделювання для оцінки напружено-деформованого стану підпірних стін скла-дних конфігурацій / Л.О.Бондарева, В.С.Носенко, А.Р.Маламан // Науково-технічний збірник «Основи і фундамен-ти». – К.: КНУБА. – 2022. – Вип. 45. – С.9-21. DOI: 10.32347/0475-1132.45.2022.9-21
Зоценко М.Л. Моделювання напружено-деформованого стану зсувного схилу. / М.Л.Зоценко, Ю.Л.Винников, М.О.Харченко, В.І.Марченко, А.М.Виноградова, В.О.Костенко, В.А.Титаренко // Збірник наукових праць [Полтавського національного технічного університету ім. Ю. Кондратюка]. Сер. : Галузеве машинобудування, будівництво. – Полтава: ПолтНТУ, – 2013. – Вип. 3(38). Том 1. – C.160-196.
Козлова Т.В. Виявлення хвильових дефо-рмаційних процесів зсувних схилів північ-но-західного Причорномор’я за даними інструментальних спостережень / Т.В.Козлова, Є.А.Черкез // «Вісник Одесь-кого національного університету. Сер.: Географічні і геологічні науки». – Одеса: Одеський національний університет імені І. І. Мечникова. – 2021. – Вип. 2 (39). Том 26. – С.149-164. DOI: 10.18524/2303–9914.2021.2(39).247157
Ручківський В.В. Напружено-деформований стан підпірних стін в зале-жності від їх конструкцій / В.В.Ручківський // Науково-технічний збі-рник «Основи і фундаменти». – К.: КНУ-БА. – 2020. – Вип. 40. – С.76-82. DOI: 10.32347/0475-1132.40.2020.76-82
Черкез Є.А. Оцінка ролі факторів форму-вання та розвитку зсувів одеського узбе-режжя / Є.А.Черкез, Д.В.Мелконян // «Віс-ник Одеського національного університе-ту. Географічні і геологічні науки». – Оде-са: Одеський національний університет імені І. І. Мечникова. – 2009. – Вип. 16. Том 14. – С.268-279.
Kondner R. L. Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. USA. – 1963. – 89. P.115–144.
Schanz T. The Hardening Soil Model: Formulation and verification. / T.Schanz, P.A.Vermeer // Beyond 2000 in Computational Geotechnics. Balkema. Rotterdam. – 1999. – 1. P.281-290.
Bondareva L.O., Nosenko V.S., Malaman A.R. (2022). Vykorystannia 2D ta 3D modeliuvannia dlia otsinky napruzheno-deformovanoho stanu pidpirnykh stin skladnykh konfihuratsii. [Use of 2D and 3D modeling to assess the stress-strain state of retaining walls of complex configurations]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 45, 9-21 (in Ukrainian). DOI: 10.32347/0475-1132.45.2022.9-21
Zotsenko M.L., Vinnikov Yu.L., Harchenko M.O., Marchenko V.I., Vinogradova A.M., Kos-tenko V.O., Titarenko V.A. (2013). Modelyuvannya napruzheno-deformovanogo stanu zsuvnogo shilu. [Simulation of the stressed-deformed state of soil massif of landslide slope]. Zbіrnik naukovih prats (galuzeve mashinobu-duvannya, budivnitstvo). Poltava: PoltNTU, 3(38), 160-169 (in Ukrainian).
Kozlova T.V., Cherkez Y.A. (2021). Vy-iavlennia khvylovykh deforma-tsiinykh protsesiv zsuvnykh skhyliv pivnichno-zakhidnoho Prychornomoria za danymy in-strume-ntalnykh sposterezhen. [Identifica-tion of wave deformation processes of the landslide slopes of the northwestern Black Sea coast based on the data of instrumental observations]. «Visnyk Odeskoho natsional-noho universytetu. Ser.: Heohrafichni i he-olohichni nauky». Odesa: Odeskyi natsion-alnyi universytet imeni I. I. Mechnykova. 2 (39), Vol. 26, 149-164 (in Ukrainian). DOI: 10.18524/2303–9914.2021.2(39).247157
Ruchkivskyi V.V. (2020). Napruzheno-deformovanyi stan pidpirnykh stin v zalezh-nosti vid yikh konstruktsii. [Stress-strain state of retaining walls depending on them con-struction]. Naukovo-tehnichniy zbirnik «Os-novi i fundamenti». Kyiv: KNUBA, 40, 76-82 (in Ukrainian). DOI: 10.32347/0475-1132.40.2020.76-82
Cherkez Ye.A., Melkonian D.V. (2009). Otsinka roli faktoriv formuvannia ta rozvytku zsuviv odeskoho uzberezhzhia. [Valuation of formation and development factors of the odessa coast landslide]. «Visnyk Odeskoho natsionalnoho univer-sytetu. Heohrafichni i heolohichni nauky». Odesa: Odeskyi natsionalnyi universytet imeni I. I. Mechnykova. 2 16, Vol. 14, 268-279 (in Ukrainian).
Kondner R. L. (1963). Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. 89, 115–144.
Schanz T., Vermeer P. A., Bonnier P. G. (1999). The Hardening Soil Model: Formulation and verification. Beyond 2000 in Computational Geotechnics. Balkema. Rotterdam, 1, 281–290.