The influence of the parameters of engineering protective structures on the effectiveness of their use in densely built-up territory
Main Article Content
Abstract
A study of the influence of application of an engineering protective screen made of small-diameter driven piles on the existing building deformations, caused by the arrangement of the pit fence made of bored piles, was carried out. The study was carried out with the help of numerical modeling using the method of finite elements, which allowed to display the work of the system "soil base - engineering protective structures - the foundation of the existing building" with different parameters of the protective screen. The influence of the following parameters is shown:
1) the depth of laying the protective screen L in relation to the depth of the compressible soil zone (Hst).
2) the position of the protective screen between the retaining structures of the pit and the existing building.
3) rigidity of the screen – the ratio of the step to the diameter of the piles of the engineering protective screen.
4) the distance between the existing building and the pit in relation to the depth of the enclosing structures of the pit of the new construction.
The tasks were modeled in a spatial arrangement with the task of the system "soil base - enclosing constructions of the pit - protective screen - foundations of the existing building". The soil environment was modeled using the Hardening Soil Model. The calculation was carried out in stages.
The variation of the parameters of the protective screen was carried out for the historical building, which in most cases was made according to a rigid wall construction scheme with strip foundations.
The foundation depth is 1.2 - 3.0 m and the foundation width is 1-2 m. The average pressure under the foundation is 150-250 kPa.
The rational depth of the foundation and the position of the protective screen between the existing building and the pit of the new construction were established.
The area of effective application of the protective screen was revealed, depending on the distance between the building and the pit fence.
The effective stiffness is established depending on the change in the relative distance between the poles of the protective screen.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Основи і фундаменти будівель та споруд. ДБН В.2.1-10-2018. – К. : Мінрегіон Ук-раїни, 2018. – 36 с. – (Державні будівель-ні норми).
ДБН В 1.2-12-2008. Будівництво в умовах ущільненої забудови. – К.: Мінрегіонбуд, 2008-43с.
Бойко І.П., Сахаров В.О. Напружено-деформований стан грунтового масиву при побудові нових фундаментів поблизу існуючих будинків // Основи і фундамен-ти: міжвідомчий науково-технічний збір-ник.–К: КНУБА, 2004 – Вип. 28 –С. 3-10.
Бондарєва Л., Носенко В., Маламан А. Використання 2D та 3D моделювання для оцінки напружено-деформованого стану підпірних стінок складної конфігурації // Науково-технічний збірник «Основи та фундаменти». К.: КНУБА. – 2022. – Вип.45. – С. 9-21. DOI:10.32347/0475-1132.44.2022.67-78
Винников Ю.Л., Харченко М.О., Єрмолен-ко Д.А., Акопян М.К. Геотехнінчний мо-ніторинг улаштування котловану новобу-дови поруч з існуючими будівлями // Мо-сти та тунелы: Теорія, дослідження, практика. – 2022, №22 УДК 69:624.152-047.
Сахаров В.О. Оцінка взаємодії фундаме-нтів існуючого будинку з основою при влаштуванні котловану // Основи і фунда-менти, 2002. – Вип. 27 - С.113-123.
Bin-Chen B.H. The use of piling and prop-ping for the protection of buildings beside deep excavations: case studies from Taipei, Taiwan / B.H. Bin-Chen, F.T. David, C. Chun-Hung, N.H. Richard, Hwang // Proc. The 3rd Int. Symp. (IS-Toulouse. 2002).
Chang-Yu Ou Deep Excavation. Theory and Practice. London 2006: CRC Press.
Katzenbach R., Leppla S., Seip M., & Kurze S. Value Engineering as a basis for safe, op-timized and sustainable design of geotech-nical structures. Proc. Of the XVI European Conf. on Soil Mechanics and Geotechnical Engineering for Infrastructure and Devel-opment- 2010, 601-606.
fundamenty budivel ta sporud [Bases and foundations of buildings and structures]. K.: Minrehion Ukrainy. 36s. – Derzhavni budivelni normy. (in Ukrainian).
DBN V 1.2-12-2008. (2008). Budivnytstvo v umovakh ushchilnenoi zabudovy [Con-struction in the densely built-up territory]. K.: Minrehionbud. 43s (in Ukrainian).
Boiko I.P., Sakharov V.O. (2004). Napruzheno-deformovanyi stan hruntovoho masyvu pry pobudovi novykh fundamentiv poblyzu isnuiuchykh budynkiv [The stress-strain state of the soil massif during the con-struction of new foundations near existing buildings]. Osnovy i fundamenty: mizhvidomchyi naukovo-tekhnichnyi zbirnyk. K: KNUBA. Vyp. 28. S.3-10.
Bondarieva L., Nosenko V., Malaman A. (2022). Vykorystannia 2D ta 3D modeliuvannia dlia otsinky napruzheno-deformovanoho stanu pidpirnykh stinok skladnoi konfihuratsii [Use of 2D and 3D modeling to assses the stress-strain state of retaining walls of complex configuration]. Naukovo-tekhnichnyi zbirnyk «Osnovy ta fundamenty». K.: KNUBA. Vyp.45. S. 9-21. DOI:10.32347/0475-1132.44.2022.67-78 (in Ukrainian).
Vynnykov Yu.L., Kharchenko M.O., Yermolen-ko D.A., Akopian M.K. (2022). Heotekhninchnyi monitorynh ulashtuvannia kotlovanu novobudovy poruch z isnuiuchymy budivliamy [Geotechnical monitoring of the arrangement of the pit of new building to the existing buildings] // Mosty ta tuneli: Teoriia, doslidzhennia, praktyka. 2022, №22 UDK 69:624.152-047.
Sakharov V.O. (2002). Otsinka vzaiemodii fundamentiv isnuiuchoho budynku z osnovoiu pry vlashtuvanni kotlovanu [Eval-uation of the interaction of the foundations of the existing buildings with the foundation during the installation of a pit]. Osnovy i fundamenty. Vyp. 27. S.113-123.5.
Bin-Chen B.H. David F.T., Chun-Hung C., Richard N.H., Hwang (2002). The use of pil-ing and propping for the protection of build-ings beside deep excavations: case studies from Taipei, Taiwan. Proc. The 3rd Int. Symp. (IS-Toulouse. 2002).
Chang-Yu Ou. (2006). Deep Excavation. Theory and Practice. London 2006: CRC Press.
Katzenbach R., Leppla S., Seip M., & Kurze S. (2010). Value Engineering as a basis for safe, optimized and sustainable design of geotechnical structures. Proc. Of the XVI Eu-ropean Conf. on Soil Mechanics and Ge-otechnical Engineering for Infrastructure and Development, 601-606.