Influence of soil base deformation methods on the formation of the stress-strain state of retaining walls
Main Article Content
Abstract
The results of numerical modeling of the interaction between a pile retaining wall and the soil base using the software complexes "Plaxis" and "LIRA-SAPR" are presented. A comparison of the stress-strain state of retaining walls using different calculation methods, taking into account the presence of rock soil, has been performed.
In the first variant, the active pressure on the wall was determined manually in accordance with the current standards [3], and the subsequent calculation was carried out in the "LIRA-SAPR" software complex. The "pile-soil" system was modeled using FE 57, which are interconnected by FE 10 (rod), and the values of horizontal stiffness (Rx,y) were determined according to the requirements of [3].
In the second variant, the retaining wall calculation was performed in "Plaxis 2D". The soil behavior model is "Mohr-Coulomb", and for rock - "Hoek-Brown". It was considered that rock soils lie at the base of the retaining wall, which revealed significant differences in the distribution of bending moments along the length of the retaining wall.
It was established that the stress-strain state in the first variant significantly differs from the second. The difference in maximum horizontal displacements after the calculation by the first and second methods was shown. Differences and variations in the values of bending moments occurring in the retaining wall were investigated. The importance of using modern geotechnical calculation software complexes for a more detailed and accurate analysis of structures and foundations was demonstrated.
Additionally, an assessment of the impact of variations in the parameters of the soil and retaining wall models on the calculation results was conducted. The research results allow recommending the use of a comprehensive modeling approach to enhance the reliability and efficiency of retaining wall design. The analysis also shows that the application of different soil behavior models can significantly affect the final calculation results, highlighting the need for careful selection of modeling parameters.
The obtained results have significant practical value for engineers and designers, as they allow for more accurate prediction of the behavior of retaining walls under various operating conditions. This contributes to improving the safety and cost-effectiveness of construction projects.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Аналіз існуючих методик розрахунку підпірних стін з буронабивних паль. / Д. Михайловський, О. Комар, М. Хоронжевський // Основи та фундаменти: Науково-технічний збірник. – К.: КНУБА. – 2023. – Вип. 46. – С. 88-97.
Hoek E, Carranza-Torres CT, Corkum B. Hoek-Brown failure criterion – 2002 edition. Proceeding of the 5th North American Rock Mechanics Symposium. Toronto, Canada, vol. 1, 2002, pp. 267 – 273.
Настанова з проектування підпірних стін: ДСТУ-Н Б В.2.1-31:2014 К.: Мінрегіонбуд України, 2015.
Основи та фундаменти споруд. Основні положення: ДБНВ.2.1–10:2018. – [ Чинний від 2019.01.01]. – К.: Мінрегіон України, 2018 – 36с.
Михайловский Д.В. Моделювання пальового фундаменту з використанням об'ємних фізично-нелінійних скінчених елементів грунту / Д.В. Михайловский, Д.М. Матющенко, А.О.Смоленський. // Науково-технічний журнал «Нові технології в будівництві». №29’15; Київ: НДІБВ, 2015. - С.44 - 52.
Городецкий А.С. Компьютерные модели конструкций / А.С. Городецкий, И.Д. Евзеров. – Київ: ФАКТ, 2007. – 392с.
Mykhailovskyi D., Komar O., Khoronzhevskyi M. (2023). Analiz isnuiuchykh metodyk rozrakhunku pidpirnykh stin z buronabyvnykh pal [Analysis of existing methods for calculating retaining walls from bored piles]. Osnovy ta fundamenty: Naukovo-tekhnichnyi zbirnyk. K.: KNUBA. Vyp. 46. S.88-97 (in Ukrainian).
Hoek E, Carranza-Torres CT, Corkum B. (2002). Hoek-Brown failure criterion – 2002 edition. Proceeding of the 5th North American Rock Mechanics Symposium. Toronto, Canada, vol. 1, pp. 267 – 273.
Nastanova z proektuvannia pidpirnykh stin [Guidelines for the design of retaining walls]: DSTU-N B V.2.1-31:2014 K.: Minrehionbud Ukrainy, 2015.
Osnovy ta fundamenty sporud. Osnovni polozhennia: DBNV.2.1–10:2018. – [ Chynnyi vid 2019.01.01]. – K.: Minrehion Ukrainy, 2018 – 36s
Mykhailovskyi D.V., Matiushchenko D.M., Smolenskyi A.O. (2015). Modeliuvannia palovoho fundamentu z vykorystanniam obiemnykh fizychno-neliniinykh skinchenykh elementiv hruntu [Modeling of the pile foundation using volumetric physically nonlinear finite soil elements]. Naukovo-tekhnichnyi zhurnal «Novi tekhnolohii v budi-vnytstvi». Kyiv: NDIBV, №2915, S.44 - 52.
Horodetskyi A.S., Evzerov Y.D. (2007). Kompiuternye modely konstruktsyi [Computer models of structures]. Kyiv: FAKT, 392s.