The use of planar and three-dimensional calculation models for the numerical modeling of retaining walls in conditions of dense urban construction

Main Article Content

Viktor NOSENKO
Artur MALAMAN

Abstract

In modern realities, the construction of multi-story buildings increasingly has to be carried out in the conditions of dense urban development. Since high-rise buildings are characterized by the presence of deep pits, there is a need to select the parameters of the enclosing structures (retaining walls) and take into account the influence of the pit arrangement and enclosing structures on the existing building.


Numerical simulation of the stress-strain state (SSS) of the elements "soil base - existing structures - pit enclosure" was performed to assess the impact of choosing the dimensions of the calculation scheme when designing a deep pit and assessing its impact on existing buildings and selecting effective parameters of enclosing structures. with different dimension options (flat two-dimensional and spatial three-dimensional) calculation scheme.


Modeling was performed using the finite element method using a nonlinear model of soil deformation in the Plaxis software package.


Since the soil conditions within the construction site are complex (the presence of a significant layer of plastic and flowing clay soils and powerful aquifers), the level of groundwater within the construction site was taken into account in the modeling and the effect of water lowering during the development of the pit was modeled accordingly for a more correct assessment of the stress-strained state of pit enclosure elements and the impact on existing structures.


Numerical calculations of retaining walls provide for taking into account the technological sequence of the construction of retaining walls and modeling of the step-by-step development of the pit.


Studies have shown that the use of a spatial finite-element model of the system "soil base - existing structures - pit enclosure" provides an opportunity to more correctly and effectively assess the stress-deformed state of system elements due to taking into account the spatial rigidity of the elements of the pit enclosure and the foundations of existing structures.


The values of the displacements of the retaining walls obtained by the calculation of the spatial finite element model (FEM) are 20% smaller than the values obtained using the plane FEM. The values of the bending moments obtained by the calculation of the spatial FEM are 10% smaller than the values obtained using the plane FEM.

Article Details

How to Cite
NOSENKO, V., & MALAMAN, A. (2024). The use of planar and three-dimensional calculation models for the numerical modeling of retaining walls in conditions of dense urban construction. Bases and Foundations, (48), 9–20. https://doi.org/10.32347/0475-1132.48.2024.9-20
Section
Статті
Author Biographies

Viktor NOSENKO, Kyiv National University of Construction and Architecture

Head of the Department of Geotechniks

Artur MALAMAN, Kyiv National University of Construction and Architecture

postgraduate of the Department of Geotechnics

References

Блащук Н.В. Моделювання впливу влаштування глибокого котловану складної форми на поряд розташовані будинки / Н.В. Блащук, І.В. Маєвська, В.Є. Губашо-ва // Збірник наукових праць «Сучасні тех-нології, мате-ріали і конструкції в будів-ництві». – Вінниця: ВНТУ. – 2022. – Том 33. No2. – С. 132-141. DOI:10.31649/2311-1429-2022-2-132-141

Бондарева Л.О. Використання 2D та 3D моделювання для оцінки напружено-деформованого стану підпірних стін скла-дних конфігурацій / Л.О. Бондарева, В.С. Носенко, А.Р. Маламан // Науково-технічний збірник «Основи і фундамен-ти». – К.: КНУБА. – 2022. – Вип. 45. – С. 9-21. DOI: 10.32347/0475-1132.45.2022.9-21

Бойко І.П. Напружено-деформований стан ґрунтового масиву при прибудові нових фундаментів поблизу існуючих будинків. / І.П. Бойко, В.О. Сахаров // Основи і фун-даменти: Міжвідомчий науково-технічний збірник. – К.: КНУБА. – 2004. – Вип. 28. – С. 3-10.

Zotsenko M.L. Base deformation’s features during deep foundation pit excavation / M.L. Zotsenko, Yu.L. Vinnikov // Academic journal. Industrial Machine Building, Civil Engineering. – Poltava: PoltNTU. – Вип. 2(55). – С.76-81. DOI: 10.26906/znp.2020.55.2346.

Носенко В.С. Вибір оптимальних параметрів підпірної стіни огородження котловану в умовах щільної забудови з врахуванням її просторової жорсткості / В.С. Но-сенко, А.Р. Маламан // Науково-технічний збірник «Основи і фундаменти». – К.: КНУБА. – 2023. – Вип. 46. – С. 141-152. DOI: 10.32347/0475-1132.46.2023.141-152.

Ручківський В.В. Формування напружено-деформованого стану основи при зведенні фундаментів на різних відмітках в щільно забудованій території / В.В. Ручківський // Науково-технічний збірник «Основи і фу-ндаменти». – К.: КНУБА. – 2021. – Вип. 42. – С. 64-71. DOI: 10.32347/0475-1132.42.2021.64-71.

Kondner R. L. Hyperbolic stress strain response: Cohesive soils. / R. L. Kondner // Journal of the Soil Mechanics and Foundations Division. - USA. – 1963. – 89. P.115–144.

Schanz T. The Hardening Soil Model: Formulation and verification. / T. Schanz, P. A. Vermeer // Beyond 2000 in Computational Geotechnics. – Balkema. Rotterdam. – 1999. – 1. – P.281-290.

Основи та фундаменти споруд. Основні положення: ДБН В.2.1-10:2018. – [Чинний від 2019.01.01]. – К.: Мінрегіонбуд Украї-ни, 2018 – 36 с.

Blashchuk N.V., Maievska I.V., Hubashova V.I. (2022). Modeliuvannia vplyvu vlashtuvannia hlybokoho kotlovanu skladnoi formy na poriad roztashovani budynky. [Simulation of the influence of the device of a deep pit of complex shapes on nearby located houses]. Naukovo-tehnichniy zbirnik «Suchasni tekhnolohii, materialy i konstruktsii v budivnytstvi». Vinnytsia: VNTU, 33(2), 132-141 (in Ukrainian). DOI: 10.31649/2311-1429-2022-2-132-141

Bondareva L.O., Nosenko V.S., Malaman A.R. (2022). Vykorystannia 2D ta 3D modeliuvannia dlia otsinky napruzheno-deformovanoho stanu pidpirnykh stin skladnykh konfihuratsii. [Use of 2D and 3D modeling to assess the stress-strain state of retaining walls of complex configurations]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 45, 9-21 (in Ukrainian). DOI: 10.32347/0475-1132.45.2022.9-21

Boyko I.P. (2004). Napruzheno-deformovanyi stan gruntovoho masyvu pry prybudovi novykh fundamentiv poblyzu isnuiuchykh budynkiv. [Stress-stain state of the soil massif during the addition of new foundations near existing buildings]. Osnovy i fundamenty: Mizhvidomchyi naukovo-tekhnichnyi zbirnyk. Kyiv: KNUBA, 28, 3-10. (in Ukrainian).

Zotsenko M.L. (2020). Base deformation’s features during deep foundation pit excavation. Academic journal. Industrial Machine Building, Civil Engineering. Polta-va: PoltNTU, 2(55), 76-81. DOI: 10.26906/znp.2020.55.2346

Nosenko V.S. (2023). Vybir optymalnykh paramet-riv pidpirnoi stiny ohorodzhennia kotlovanu v umovakh shchilnoi zabudovy z vrakhuvanniam yii prostorovoi zhorstkosti. [The choice of optimal parameters of the re-taining wall of the pit enclosure in conditions ofdense construction, taking into account its spatial rigidity]. Naukovo-tehnichniy zbirnik «Osnovi i fundamenti». Kyiv: KNUBA, 46, 141-152 (in Ukrainian). DOI: 10.32347/0475-1132.46.2023.141-152

Ruchkivskyi V.V. (2021). Formuvannia napruzheno-deformovanoho stanu osnovy pry zvedenni fundamentiv na riznykh vid-mitkakh v shchilno zabudovanii terytorii. [Formation of the stress-strain state of the base during construction foundations at dif-ferent marks in a densely built-up territory]. Naukovo-tehnichniy zbirnik «Osnovi i fun-damenti». Kyiv: KNUBA, 42, 64-71 (in Ukrainian). DOI: 10.32347/0475-1132.42.2021.64-71

Kondner R. L. (1963). Hyperbolic stress strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division. 89, 115–144.

Schanz T., Vermeer P. A., Bonnier P. G. (1999). The Hardening Soil Model: Formulation and verification. Beyond 2000 in Computational Geotechnics. Balkema. Rotterdam, 1, 281–290.

Osnovy ta fundamenty sporud. Osnovni polozhennya: DBN V.2.1-10:2018. (2019) Kyiv: Minregionbud Ukrainy, 36 (in Ukrain-ian).