Numerical studies of the distribution capability of a continuous linear strain soil base model for largesized raft foundations

Main Article Content

Oleksandr SAMORODOV
Olha HAVRYLIUK

Abstract

The paper examines the existing methodology for determining the main design parameters of the model in the form of a continuous linearly strained layer of finite distribution capability (the design thickness of the layer H0 and design stress-strain modulus E0) to simulate the adequate interaction between soil bases and large-size slab foundations. The aim of this work is to numerically study the stress-strain state of a uniformly loaded flexible rectangular foundation slab when the thickness of the soil base model layer is reduced in the form of a continuous linearly deformed layer of finite distribution capacity. Numerical studies of the effect of the thickness of the layer of the specified soil base model that interacts with a large-size flexible slab foundation of various rectangular shapes in plan were conducted in the SCAD package using the finite element method. The numerical study results have shown that when the ratio H0/Ha (the design thickness of the layer of the soil base model H0 to the actual compressible thickness of the soil base Ha) decreases, the maximum moment forces along the orthogonal axes of rectangular foundations decrease to 50% because of the decrease in the distribution capability of the soil base model and, accordingly, in the edge reactions R under the slab at equal average settlements of the slab saver. Numerical studies have shown interesting results on the distribution of moment forces in flexible rectangular slabs, where the maximum is outside the center of gravity of a uniformly loaded raft, which confirms the peculiarity of the interaction of flexible slabs with relatively narrow compressible layers under the sole. With an appropriate in-situ experimental justification, the use of the soil base model in the form as a continuous linearly strained layer of finite distribution capability with the design parameters (H0 and E0) rather than with the actual parameters (Ha and Ea) in calculations of large-size slab foundations can be of fundamental practical importance in their rational design, as the reinforcement can be reduced to 50%

Article Details

How to Cite
SAMORODOV, O., & HAVRYLIUK, O. (2024). Numerical studies of the distribution capability of a continuous linear strain soil base model for largesized raft foundations. Bases and Foundations, (48), 75–85. https://doi.org/10.32347/0475-1132.48.2024.75-85
Section
Статті
Author Biographies

Oleksandr SAMORODOV, O.M. Beketov National University of Urban Economy in Kharkiv

Professor of the Department of Geotechnics, Underground Structures and Hydraulic Engineering
Doctor of Technical Sciences

Olha HAVRYLIUK, O.M. Beketov National University of Urban Economy in Kharkiv

Senior Lecturer of the Department of Geotechnics, Underground Structures and Hydraulic Engineering

References

Герсеванов Н.М. Опыт применения тео-рии упругости к определению допус-каемых нагрузок на грунт на основе экспериментальных работ / Н. М. Герсе-ванов // Труды МИИТ. – 1930. – Вып. XV. – С. 4–11.

Флорин В.А. Основы механики грунтов / В.А. Флорин // – Ленинград, Москва: Госстройиздат, 1959. – Т. 1. – 357 с.

Основи і фундаменти будівель та споруд ДБНВ.2.1-10:2018 – [Чинний від 2019-01-01]. – К.: Мінрегіонбуд України, 2018. – 36 с.

Лучковский И.Я. Взаимодействие конс-трукций с основанием / И.Я. Лучковский. – Харкiв: ХДАГХ (Бiблiотека журналу IТЕ), 2000. – Том 3. – 264 с.

Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)/НИИОСП им. Герсеванова. — М.: Стройиздат, 1986. — 415 с.

Егоров К.Е. К вопросу деформации осно-вания конечной толщины / К.Е. Егоров // Механика грунтов: сб. тр. НИИОСП. – 1958. – Вып. 34. – С. 5-33.

Самарин И.К. Взаимодействие конструк-ций гидротехнических сооружений с ос-нованием / И.К. Самарин // – М.: Стройиз-дат, 1978. – 136 с.

Lutchkovsky I.J. Definition of the parameters of an elastic finite layer / I.J. Lutchkovsky, O.V. Samorodov // Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering for Infrastructure and Development. – Edinburgh, Scotland, 2015. – P. 3711-3715.

Самородов А.В. Внецентренно нагружен-ные фундаменты с вырезами по подошве: дисс. … канд. техн. наук : 05.23.02 / А.В. Самородов; ПГАСА. – Днепропетровск, 2005. – 203 с.

Бойко І. П. Вплив послідовності зве-дення суміжних секцій висотного будинку на перерозподіл зусиль у пальових фун-даментах / І.П. Бойко, В.С. Носенко // Збі-рник наукових праць Полтавського націо-нального технічного університету ім. Ю. Кондратюка. Сер.: Галузеве машинобуду-вання, будівництво. - 2012. - Вип. 4(1). - С. 54–60.

Носенко В.С. Вплив жорсткості несу-чих конструкцій будинку зі збірного залі-зобетону на напружено-деформований стан фундаментів із буроін’єкційних паль / В.С. Носенко, О.А. Кривенко // Основи і фундаменти: Міжвідомчий науково-технічний збірник. – К.: КНУБА. – 2020. – Вип. 40. – С. 48-57.

Gersevanov N.M. (1930). Opit primeneniya teorii uprugosti k opredeleniyu dopuskae-mikh nagruzok na grunt na osnove eksperi-mentalnikh rabot. [Experience in applying the theory of elasticity to determining per-missible loads on soil based on experimental work]. Proceedings of MIIT, Vol. XV, pp. 4-11 (in Russian).

Florin V.A. (1959). Osnovi mehaniki gruntov [Fundamentals of soil mechanics]. L.-M.: Stroyizdat, 357 р. (in Russian).

Osnovy i fundamenty budivelʹ ta sporud DBN V.2.1-10:2018. (2018) – [Chynnyy vid 2019-01-01]. – Kyiv: Minrehionbud Ukrayiny, 36 (in Ukrainian).

Luchkovsky I.Ya. (2000) Vzaimodeystviye konstruktsiy s osnovaniyem [Interaction of structures with the base]. Kharkiv: KHDAKH (Library of the ITA journal), vol. 3, 264 p. (in Russian).

Posobiye po proyektirovaniyu osnovaniy zdaniy i sooruzheniy (k SNiP 2.02.01-83) (1986). [Guide for design of bases of buildings and structures (supplement to SNiP 2.02.01-83)]. NIIOSP named after N.M. Gersevanov. M.: Stroyizdat, 415 p.

Egorov K.E. (1958). K voprosu deformatsii osnovaniya konechnoy tolshchiny [More on the deformation of the soil base of finite thickness]. Soil Mechanics: Proceedings of the Scientific Research Institute for Foundations and Underground Structures, vol. 34, 5-33.

Samarin I.K. (1978). Vzaimodeistvie konstruktsii gidrotekhnicheskikh sooruzhenii s osnovaniem [Interaction of hydraulic structures with the foundation]. M.: Stroyiz-dat, 136 p.

(in Russian).

Lutchkovsky, I.J., Samorodov, O.V. (2015). Definition of the parameters of an elastic finite layer. Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering for Infrastructure and Development. Edinburgh, Scotland: 2015,

pp. 3711-3715.

Samorodov O.V. (2005). Vnetsentrenno nagruzhennie fundamenti s virezami po podoshve [Eccentrically loaded foundations with cutouts on the sole]. Kandydats'ka dysertatsiia [Candidate's dissertation]. Dnepropetrovsk, 203 р. (in Russian).

Boyko, I.P., Nosenko, V.S. (2012). Vplyv poslidovnosti zvedennya sumizhnykh sektsiy vysotnoho budynku na pererozpodil zusyl u palovykh fundamentakh [The influ-ence of the sequence of construction of ad-jacent sections of a high-rise building on the redistribution of forces in pile foundations]. Zbirnyk naukovykh prats. Seriia: Haluzeve mashynobuduvannia, budivnytstvo. Poltava: PoltNTU, (1), 54-60. (in Ukrainian).

Nosenko, V.S., Krivenko, O.A. (2020). Vplyv zhorstkosti nesuchykh konstruktsiy budynku zi zbirnoho zalizobetonu na napru-zheno-deformovanyy stan fundamentiv iz buroinyektsiynykh pal [The influence of the stiffness of the bearing structures of a pre-cast concrete building on the stress-strain state of foundations made of augercast piles]. Osnovu i fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk, 40, 48-57 (in Ukrainian).