Study of Stress-Strain State of foundation structures in determining pile vertical stiffness if various software suites
Main Article Content
Abstract
Summary This paper presents the results of numerical modeling of the interaction between a sheet pile retaining wall and the soil foundation using the Plaxis software package. A detailed analysis of the stress-strain state (SSS) of the retaining wall was carried out for both two-dimensional (2D) and three-dimensional (3D) problem formulations. The aim of the study is to evaluate the influence of the spatial modeling approach on the distribution of forces and displacements in the retaining wall structure and to compare the results of 2D and 3D analyses.
As part of the study, the 2D calculation of the SSS of the retaining wall was performed using the Plaxis 2D software. This method provides the distribution of stresses and strains within the cross-sectional plane of the structure, offering valuable insights into the interaction between the wall and the soil foundation. However, the main limitation of this approach is its inability to account for the spatial behavior of structures, including the interaction between different structural elements such as piles, walers, and bracing components.
The 3D analysis was performed using the Plaxis 3D software, employing the Hardening Soil model for soil behavior. This approach enables a comprehensive consideration of the spatial behavior of structures, allowing for a more accurate simulation of the retaining wall's performance under load. The model takes into account the influence of walers and bracing components, ensuring a more uniform force distribution within the structure.
Three characteristic piles were selected for analysis: a corner pile (№1), an edge pile (№2), and a central pile (№3). The results of numerical modeling revealed that the bending moments and horizontal displacements for the corner and edge piles exhibit similar patterns and close values in both the 2D and 3D analyses. However, significant differences in the distribution of bending moments and displacements were observed for the central pile. This discrepancy is attributed to the inclusion of additional structural elements in the 3D model, which distribute the loads more evenly and improve result accuracy.
The findings confirm the importance of using 3D modeling for the assessment of the stress-strain state of complex engineering structures such as sheet pile retaining walls. They also demonstrate that accounting for the spatial behavior of structures significantly affects the final distribution of forces and displacements, providing a more precise representation of the wall's real behavior.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
ЛІТЕРАТУРА
Михайловський Д.О. Аналіз існуючих ме-тодик розрахунку підпірних стін з бу-ронабивних паль. / Д. Михайловський, О. Комар, М. Хоронжевський // Основи та фундаменти: Науково-технічний збірник. – К.: КНУБА. – 2023. – Вип. 46. – С. 88-97.
DOI: 10.32347/0475-1132.46.2023.88-97
Настанова з проектування підпірних стін: ДСТУ-Н Б В.2.1-31:2014 К.: Мінрегіонбуд України, 2015.
Основи та фундаменти споруд. Основні положення: ДБНВ.2.1–10:2018. – [Чинний від 2019.01.01]. – К.: Мінрегіон України, 2018 – 36с.
Михайловский Д.В. Моделювання пальо-вого фундаменту з використанням об'єм-них фізично-нелінійних скінчених елемен-тів грунту / Д.В. Михайловский, Д.М. Ма-тющенко, А.О.Смоленський. // Науково-технічний журнал «Нові технології в бу-дівництві». №29’15 – Київ: НДІБВ. – 2015. – С.44 – 52.
Городецкий А.С. Компьютерные модели конструкций / А.С. Городецкий, И.Д. Евзеров. – Київ: ФАКТ, 2007. – 392с.
REFERENCES
Mykhailovskyi D., Komar O., Khoron-zhevskyi M. (2023) Analiz isnuiuchykh metodyk rozrakhunku pid-pirnykh stin z bu-ronabyvnykh pal [Analysis of existing methods for calculating retaining walls from bored piles]. Osnovy ta fundamenty: Nau-kovo-tekhnichnyi zbirnyk. Kyiv: KNUBA, 46, 88-97 (in Ukrainian).
DOI: 10.32347/0475-1132.46.2023.88-97
Nastanova z proektuvannia pidpirnykh stin: DSTU-N B V.2.1-31:2014 9 (2015) K.: Minrehionbud Ukrainy. (in Ukrainian).
Osnovy ta fundamenty sporud. Osnovni polozhennia: DBNV.2.1–10:2018. (2018) – [Chynnyi vid 2019.01.01]. – K.: Minrehion Ukrainy, 36 (in Ukrainian).
Mykhailovskyi D.V., Matiushchenko D.M., Smolenskyi A.O. (2015) Modeliuvannia palo-voho fundamentu z vykorystanniam obiem-nykh fizychno-neliniinykh skinchenykh elemen-tiv hruntu [Pile foundation modeling using volume physical nonlinear soil finite elements] Naukovo-tekhnichnyi zhurnal «Novi tekhnolohii v budi-vnytstvi». Kyiv: NDIBV, Vol. 2915, 44-52. (in Ukrainian).
Horodetskyi A.S. Evzerov Y.D. (2007) Kompiuternыe modely konstruktsyi [Com-puter models of construction]. Kyiv: FAKT, .392 (in Ukrainian).