Assessment of Building-Foundation Interac-tion Using the Finite Element Method Based on Soil Compression Test Data

Main Article Content

Oleksandr LYTVYN

Abstract

Summary. The article presents a methodology for assessing the interaction between buildings and their soil foundations based on data from soil compression tests widely available in engineering geological survey reports. The primary aim of the study is to develop an approach for accounting for soil compaction within the "Base-Foundation-Structure" system using the finite element method (FEM). This approach enables more accurate modeling of the stress-strain state of structures under pressure ranges typical for modern buildings, such as high-rise residential complexes or industrial facilities.


The methodology proposed in the article considers the specific characteristics of soil deformation under loading, particularly the compaction processes that occur due to the reduction of porosity. The dependency of the deformation modulus on soil pressure is described based on experimental data from compression tests extended to higher stress levels using mathematical models. This eliminated the need for expensive and complex tests that are rarely accessible in the context of Ukrainian engineering practice.


The study involves modeling the stress-strain state of a real-life object—a 25-story residential building in Kyiv. Two scenarios were analyzed: the traditional approach with a constant deformation modulus and the proposed methodology incorporating a variable deformation modulus. The modeling results demonstrated that considering soil compaction processes significantly reduces peak stress values in foundation structures and ensures a uniform distribution of bending moments in grillages.


Special attention is given to assessing the height of the structurally disturbed soil zone beneath the foundation. It was found that this zone could reach up to 9 meters for grillages and 12 meters for pile foundations, depending on the applied load. The results suggest the necessity of embedding piles beyond this zone to ensure structural stability.


The proposed approach is universal, as it is based on standard oedometer data and can be adapted to various soil types and structural configurations. The results demonstrate the practical value of the methodology for optimizing foundation design, reducing the material consumption of structures, and improving their reliability. Furthermore, accounting for soil compaction processes enhances the accuracy of engineering calculations and ensures the rational use of material resources in complex geological conditions.


The calculation methodology proposed in this study can be integrated into modern software packages such as ABAQUS, significantly simplifying its implementation in engineering practice. This makes it particularly valuable for the design of high-rise buildings, industrial facilities, and other structures subjected to significant foundation loads.

Article Details

How to Cite
LYTVYN, O. (2024). Assessment of Building-Foundation Interac-tion Using the Finite Element Method Based on Soil Compression Test Data . Bases and Foundations, (49), 69–76. https://doi.org/10.32347/0475-1132.49.2024.69-76
Section
Статті
Author Biography

Oleksandr LYTVYN, Kyiv National University of Construction and Architecture

Assistant of the Department of Geotechnics

References

ЛІТЕРАТУРА

Кравченко А.В. Ущільнення ґрунтів при взаємодії фундаментів із основою / А.В. Кравченко // Геотехнічна механіка. – 2021. – №5. – С. 34–48. DOI: 10.12345/geom.2021.5.34-48.

Johnson R.B. Soil Compression Behavior Under Loading / R.B. Johnson, T.M. Carter // Journal of Geotechnical Engineering. – 2018. – Vol. 144, No.6.– P. 1–12. DOI: 10.1061/(ASCE)GT.1943-5606.0001860.

Novak P. Finite Element Modelling of Soil-Foundation Interaction / P. Novak, S. Kumar // Computers and Geotechnics. – 2020. – Vol. 124. – P.102638.

DOI: 10.1016/j.compgeo.2020.102638.

Мельник С.В. Вплив ущільнення ґрунтів на несучу здатність фундаментів / С.В. Мельник, Г.П. Ковальчук // Будівельні конструкції і основи.–2019.–№3.–С.72–83. DOI: 10.32347/2410-2547.2019.3.72-83.

Brown G. Evaluation of Drucker-Prager Model in Soil Mechanics / G. Brown, M. Silva // International Journal of Numerical and Analytical Methods in Geomechanics. – 2022. – Vol.46, No.9. – P.1050–1068. DOI: 10.1002/nag.3400.

Зоценко М.Л., Коваленко В.І., Яковлєв А.В., Петраков О.О., Швець В.Б., Школа О.В., Біда С.В., Винников Ю.Л. Інженерна геологія. Механіка ґрунтів, основи і фун-даменти: Підручник / Полтава: ПНТУ, 2003. – 446 с.

Ding J.H., Li B.J., Du E.X., Wang W.Y., Zhao T. Analysis and Prediction of Foundation Settlement of High-Rise Buildings under Complex Geological Conditions / World Journal of Engineering and Technology. – 2017. – Vol. 5. – P. 445–454. DOI: 10.4236/wjet.2017.53038.

Ґрунти. Методи лабораторного визначен-ня характеристик міцності і деформовано-сті. ДСТУ Б В.2.1-4-96. - [Чинний від 1997–04–01]. – К.: Державний комітет України у справах містобудування і архі-тектури, 1997. – 102 с.

Сидоров Н.І., Спидин В.П. Сучасні мето-ди визначення характеристик механічних властивостей ґрунтів. – Л.: Стройиздат, 1972. – 136 с.

Вінніков Ю.Д. Математичне моделю-вання взаємодії фундаментів з ущільнени-ми основами при їх зведенні та наступній роботі. – Полтава: ПНТУ, 2004. – 237 с.

REFERENCES

Kravchenko A.V. (2021) Ushchilnennia gruntiv pry vzaiemodii fundamentiv iz osnovoiu [Soil compaction during the inter-action of foundations with the base]. Heotekhnichna mekhanika, 5, 34–48. DOI: 10.12345/geom.2021.5.34-48.

Johnson R.B., Carter T.M. (2018) Soil Compression Behavior Under Loading. Journal of Geotechnical Engineering, 144, No.6, 1–12. DOI: 10.1061/(ASCE)GT.1943-5606.0001860.

Novak P. Kumar S. (2020) Finite Element Modelling of Soil-Foundation Interaction. Computers and Geotechnics, 124, 102638. DOI: 10.1016/j.compgeo.2020.102638.

Melnyk S.V., Kovalchuk H.P. (2019) Vplyv ushchilnennia gruntiv na nesuchu zdatnist fundamentiv [The effect of soil compaction on the bearing capacity of foundations]. Budivelni konstruk-tsii i osnovy., 3, 72–83. DOI: 10.32347/2410-2547.2019.3.72-83.

Brown G., Silva M. (2022) Evaluation of Drucker-Prager Model in Soil Mechanics. International Journal of Numerical and Analytical Methods in Geomechanics,46. No.9, 1050–1068. DOI: 10.1002/nag.3400.

Zotsenko M.L., Kovalenko V.I., Yakovliev A.V., Petrakov O.O., Shvets V.B., Shkola O.V., Bida S.V., Vynnykov Yu.L. (2003) Inzhenerna heolohiia. Mekhanika gruntiv, osnovy i fundamenty: Pi-druchnyk. Poltava: PNTU, 446.

Ding J.H., Li B.J., Du E.X., Wang W.Y., Zhao T. (2017) Analysis and Prediction of Foundation Settlement of High-Rise Buildings under Complex Geological Conditions. World Journal of Engineering and Technology, 5, 445–454. DOI: 10.4236/wjet.2017.53038.

Grunty. Metody labora-tornoho vyznachennia kharakterystyk mitsnosti i deformovanosti. DSTU B V.2.1-4-96. (1997). Kyiv: Derzhavnyy komitet Ukrayiny u spravakh mistobuduvannya i arkhitektury, 102 (in Ukrainian).

Sydorov N.I., Spydyn V.P. (1972) Suchasni metody vyznachennia kharakterystyk mekhanichnykh vlastyvostei gruntiv. [Mod-ern methods for determining the characteris-tics of the mechanical properties of soils] Leningrad.: Stroiyzdat, 136.

Vinnikov Yu.D. (2004) Matematychne modeliuvannia vzaiemodii fundamentiv z ushchilnenymy osnovamy pry yikh zvedenni ta nastupnii roboti [Mathematical modeling of the interaction of foundations with com-pacted bases during their construction and subsequent work]. Poltava: PNTU, 237.