Features of silo operation in difficult ge-otechnical conditions

Main Article Content

Yuriy VYNNYKOV
Maksym KHARCHENKO
Oleksii KICHASOV
Valentyn MARCHENKO

Abstract

The performance of corrugated-wall steel silos for grain storage under complex geotechnical conditions depends significantly on the silo diameter and the height-to-diameter ratio. A key factor influencing foundation design is the vertical pressure exerted by the grain on the silo bottom, which increases with diameter. Based on pressure levels, all factory-made silos are divided into three groups: small (d = 11–16 m, 80–120 kPa), medium (d = 16–22 m, 120–160 kPa), and large (d = 22–28 m, 160–200 kPa). Each group demonstrates different performance characteristics under weak or collapsible soils. For the first group, natural subsoil or compacted soil cushions may be sufficient even under poor conditions.


It has been established that for silos of the second group it is advisable to reinforce weak and subsiding soils or cut through them with pile foundations, especially for the bottom base, or to apply correctly substantiated calculation models of the joint operation of the components of the system “subsidence (weak) soil base – ring foundation – silo gallery – compacted base – bottom plate”.


For the third group, construction on a unified foundation slab that supports the silo walls, bottom, and under-silo gallery is recommended. This solution ensures more uniform deformation and reduces the risk of operational problems.


The results of surveys and numerical modeling confirm that the second group of silos is most prone to operational complications, especially if geotechnical control is not observed when compacting the backfill under the bottom.


A set of recommendations is proposed that take into account the influence of the h/d ratio, the level of loads, and the type of soil base when choosing the type of foundations, which increases the reliability and durability of structures.

Article Details

How to Cite
VYNNYKOV, Y. ., KHARCHENKO, M. ., KICHASOV, O. ., & MARCHENKO, V. . (2025). Features of silo operation in difficult ge-otechnical conditions. Bases and Foundations, (50), 32–44. https://doi.org/10.32347/0475-1132.50.2025.32-44
Section
Статті
Author Biographies

Yuriy VYNNYKOV, National University "Yuri Kondratyuk Poltava Polytechnic"

Head of the Department of Drilling and Geology

Doctor of Technical Sciences, Professor

Maksym KHARCHENKO, National University "Yuri Kondratyuk Poltava Polytechnic"

Associate Professor of the Department of Drilling and Geology

Ph.D.

Oleksii KICHASOV, National University "Yuri Kondratyuk Poltava Polytechnic"

postgraduate

Valentyn MARCHENKO, Scientific and Technical Enterprise “ALMAGROUP” LLC

Leading engineer

PhD.

References

Coduto, D. P., Kitch, W. A., & Yeung, M.-c. R. (2015). Foundation design: Principles and practices. Pearson.

ACI 313-16:2016 (2016) Design Specification for Concrete Silos and Stacking Tubes for Storing Granular Materials and Commentary. American Concrete Institute.

Махінько, А., & Махінько, Н. (2021). Сталеві ємності для зберігання зерна. К.: Вид-во «Сталь».

Fank, M. Z., Nascimento, J. W. B. d., Cardoso, D. L., Meira, A. S., & Willrich, F. L. (2018). Vertical pressures and compressive friction force in a large silo. Engenharia Agrícola, 38(4), 498–503. doi:10.1590/1809-4430-eng.agric.v38n4p498-503/2018

AS 3774 (1996) Loads on bulk containers. Sydney: Australian Standard.

Laier, J. E., Cowles, G. D. E., & White, M. E. (2008). Anatomy of foundation performance involving three grain silos systematically loaded to impending failure. Symposium honoring dr. john H. schmertmann for his contributions to civil engineering at research to practice in geotechnical engineering congress 2008. Reston, VA: American Society of Civil Engineers. doi:10.1061/40962(325)19

Мозговий, А. О., & Бутенко, А. А. (2022). Особливості конструкцій залізобетонних фундаментів силосів збільшених розмірів. Збірник наук. пр. [УкрДУЗТ]. Будівництво та цивільна інженерія, (199), 54–67. doi:10.18664/1994-7852.199.2022.258797

Bernardes, H. C., de Souza Filho, H. L., Dias, A. D., & da Cunha, R. P. (2021). Numerical Analysis of Piled Raft Foundations Designed for Settlement Control on Steel Grain Silos in Collapsible Soils. International Journal of Civil Engineering. doi:10.1007/s40999-020-00586-5

Дворник, А. М., Любченко, І. Г., Титарен-ко, В. А., & Шидловська, О. В. (2019). Ос-нови та фундаменти циліндричних силосів для зерна. Наука та будівництво, (3), 12-18.

Носенко В., & Кашоїда, О. (2021). Визначення напружено-деформованого стану групи паль шляхом числового мо-делювання їх взаємодії з основою за да-ними польових досліджень. Основи та фундаменти, (43), 87-100.

Підлуцький, В., & Литвин, О. (2020). Формування НДС у фундаментах зерно-сушильних комплексів при зміні парамет-рів грунтів. Основи та Фундаменти / Bases and Foundations, (41), 55–63. https://doi.org/10.32347/0475-1132.41.2020.55-63

Butenko, A. A., Mozgovyi, A. O., & Spirande, K. V. (2024). The improvement of the slab-ring foundation design with an un-der-silo gallery of a cylindrical steel silo on the grounds of the computer simulation re-sults and those of field observations. IOP Conference Series: Earth and Environmental Science, 1376(1), 012024. doi:10.1088/1755-1315/1376/1/012024

Dhaybi, M., Grzyb, A., Trunfio, R., & Pellet, F. (2012). Foundations reinforced by soil mixing: Physical and numerical approach. In Proc. of Intern. Symp.“Recent research, advances & execution aspects of ground improvement works (Vol. 3), 137-145.

Винников, Ю. Л., Харченко, М. О., &

Марченко, В. І. (2012). Розрахунок фун-даментної плити силосів на армованій стохастичній основі. Мости та тунелі: теорія,

дослідження, практика, 3, 26–32. doi:10.15802/bttrp2012/26411.

Ching, J. (2022). Is the scale of fluctuation the only important parameter in geotechnical spatial variability? Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society. 4531–4536.

Rebolledo, J. F. R., Santiago, I. M., Bernardes, H. C., & Mendes, T. A. (2022). Performance evaluation of rigid inclusions for settlement control of grain silos in tropical soils. Soils and Rocks, 45, e2022004822.

KMZ Industries. (б. д.). (2025). Силоси з плоским днищем. Взято з https://kmzindustries.ua/product/silosy-na-ploskom-osnovanii

Винников, Ю., Харченко, М., Марчен-ко, В., & Кічасов, О. (2023). Аналіз екс-плуатаційної придатності фундаментів споруд для зберігання зерна. Основи та Фундаменти / Bases and Foundations, 46, 63–72. doi:10.32347/0475-1132.46.2023.63-72

Марченко, В. І. (2012). Напружено-деформований стан армованих за буроз-мішувальною технологією слабких глини-стих основ з урахуванням чиннику часу. ПолтНТУ, 230.

Coduto, D. P., Kitch, W. A., & Yeung, M.-c. R. (2015). Foundation design: Principles and practices. Pearson.

ACI 313-16:2016 (2016) Design Specification for Concrete Silos and Stacking Tubes for Storing Granular Materials and Commentary. American Concrete Institute.

Makhinko, A., Makhinko, N. (2021). Stalevi yemnosti dlia zberihannia zerna. Kyiv: Vyd-vo «Stal» (in Ukrainian).

Fank, M. Z., Nascimento, J. W. B. d., Cardoso, D. L., Meira, A. S., & Willrich, F. L. (2018). Vertical pressures and compressive friction force in a large silo. Engenharia Agrícola, 38(4), 498–503. doi:10.1590/1809-4430-eng.agric.v38n4p498-503/2018

AS 3774 (1996) Loads on bulk containers. Sydney: Australian Standard.

Laier, J. E., Cowles, G. D. E., & White, M. E. (2008). Anatomy of foundation performance involving three grain silos systematically loaded to impending failure. Symposium honoring dr. john H. schmertmann for his contributions to civil engineering at research to practice in geotechnical engineering congress 2008. Reston, VA: American Society of Civil Engineers. doi:10.1061/40962(325)19

Mozghovyi, A.O., Butenko, A.A. (2022). Osoblyvosti konstruktsii zalizobetonnykh fundamentiv sylosiv zbilshenykh rozmiriv [The effective structures of reinforced con-crete foundation of syloses at grain transfer terminals]. Zbirnyk nauk. prats: Budivny-tstvo ta tsyvilna inzheneriia. UkrDUZT, 199, 54-67 (in Ukrainian).

Bernardes, H. C., de Souza Filho, H. L., Dias, A. D., & da Cunha, R. P. (2021). Numerical Analysis of Piled Raft Foundations Designed for Settlement Control on Steel Grain Silos in Collapsible Soils. International Journal of Civil Engineering. doi:10.1007/s40999-020-00586-5

Dvornyk, A.M., Liubchenko, I.H., Tytaren-ko, V.A. & Shydlovska, O.V. (2019). Osno-vy ta fundamenty tsylindrychnykh sylosiv dlia zerna [Bases and foundations for grain cylindrical silos]. Nauka ta budivnytstvo. Kyiv: NDIBK, 3, 12-18 (in Ukrainian).

Nosenko, V., Kashoida, O. (2021). Vyznachennia napryjeno-deformovanogo stany grypi pal shliahom chislovogo modeli-yvannia ih vzaie-modii z osnovoiy za dan-nimi poliovih doslidjen [Determination of the stress-strain state of group of piles by numerical simulation of their interac-tion with the base according to field research da-ta]. Osnovu ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNU-BA, 43, 87-100 (in Ukrainian).

Pidlutskyi, V.L., Lytvyn, O.V. (2020). Formuvannia NDS u fundamentakh zerno-sushylnykh kompleksiv pry zmini paramet-riv hruntiv [Formation of stress-strain state in the foundations of grain drying complexes when changing soil parameters]. Osnovy ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyi zbirnyk. Kyiv: KNUBA, 41, 55-63 (in Ukrainian).

Butenko, A. A., Mozgovyi, A. O., & Spirande, K. V. (2024). The improvement of the slab-ring foundation design with an un-der-silo gallery of a cylindrical steel silo on the grounds of the computer simulation re-sults and those of field observations. IOP Conference Series: Earth and Environmental Science, 1376(1), 012024. doi:10.1088/1755-1315/1376/1/012024

Dhaybi, M., Grzyb, A., Trunfio, R., & Pellet, F. (2012). Foundations reinforced by soil mixing: Physical and numerical approach. In Proc. of Intern. Symp.“Recent research, advances & execution aspects of ground improvement works (Vol. 3), 137-145.

Vynnykov, Yu.L., Kharchenko, M.O., Marchenko, V.I. (2012). Rozrakhunok fun-damentnoi plyty sylosiv na armovanii sto-khastychnii osnovi [Design of foundation plate of grain silage on reinforced stochastic soil base]. Mosty ta tuneli: teoriia, doslidzhennia, praktyka. Dnipro: DNUZT, 3, 26-32 (in Ukrainian).

Ching, J. (2022). Is the scale of fluctuation the only important parameter in geotechnical spatial variability? Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society. 4531–4536.

Rebolledo, J. F. R., Santiago, I. M., Bernardes, H. C., & Mendes, T. A. (2022). Performance evaluation of rigid inclusions for settlement control of grain silos in tropical soils. Soils and Rocks, 45, e2022004822.

KMZ Industries. (b. d.). (2025). Sylosy z ploskym dnyshchem. Vziato z https://kmzindustries.ua/product/silosy-na-ploskom-osnovanii (date of request: 31.03.2025) (in Ukrainian).

Vynnykov, Y., Kharchenko, M., Marchenko, V., & Kichasov, O. (2023). Ser-viceability analysis of the grain storage fa-cilities foundations. Bases and Foundations, (46), 63–72. https://doi.org/10.32347/0475-1132.46.2023.63-72 (in Ukrainian).

Marchenko, V.I. (2012). Napruzheno-deformovanyi stan armovanykh za bu-rozmishuvalnoiu tekhnolohiieiu slabkykh hlynystykh osnov z urakhuvanniam chynnyku chasu [The stress-stain state of weak clay bases reinforced by drilling-mixing technology, taking into account the time factor]. Dys. kand. tekhn. nauk: 05.23.02. Poltava: PoltNTU, 230 (in Ukrain-ian).