Features of silo operation in difficult ge-otechnical conditions
Main Article Content
Abstract
The performance of corrugated-wall steel silos for grain storage under complex geotechnical conditions depends significantly on the silo diameter and the height-to-diameter ratio. A key factor influencing foundation design is the vertical pressure exerted by the grain on the silo bottom, which increases with diameter. Based on pressure levels, all factory-made silos are divided into three groups: small (d = 11–16 m, 80–120 kPa), medium (d = 16–22 m, 120–160 kPa), and large (d = 22–28 m, 160–200 kPa). Each group demonstrates different performance characteristics under weak or collapsible soils. For the first group, natural subsoil or compacted soil cushions may be sufficient even under poor conditions.
It has been established that for silos of the second group it is advisable to reinforce weak and subsiding soils or cut through them with pile foundations, especially for the bottom base, or to apply correctly substantiated calculation models of the joint operation of the components of the system “subsidence (weak) soil base – ring foundation – silo gallery – compacted base – bottom plate”.
For the third group, construction on a unified foundation slab that supports the silo walls, bottom, and under-silo gallery is recommended. This solution ensures more uniform deformation and reduces the risk of operational problems.
The results of surveys and numerical modeling confirm that the second group of silos is most prone to operational complications, especially if geotechnical control is not observed when compacting the backfill under the bottom.
A set of recommendations is proposed that take into account the influence of the h/d ratio, the level of loads, and the type of soil base when choosing the type of foundations, which increases the reliability and durability of structures.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Coduto, D. P., Kitch, W. A., & Yeung, M.-c. R. (2015). Foundation design: Principles and practices. Pearson.
ACI 313-16:2016 (2016) Design Specification for Concrete Silos and Stacking Tubes for Storing Granular Materials and Commentary. American Concrete Institute.
Махінько, А., & Махінько, Н. (2021). Сталеві ємності для зберігання зерна. К.: Вид-во «Сталь».
Fank, M. Z., Nascimento, J. W. B. d., Cardoso, D. L., Meira, A. S., & Willrich, F. L. (2018). Vertical pressures and compressive friction force in a large silo. Engenharia Agrícola, 38(4), 498–503. doi:10.1590/1809-4430-eng.agric.v38n4p498-503/2018
AS 3774 (1996) Loads on bulk containers. Sydney: Australian Standard.
Laier, J. E., Cowles, G. D. E., & White, M. E. (2008). Anatomy of foundation performance involving three grain silos systematically loaded to impending failure. Symposium honoring dr. john H. schmertmann for his contributions to civil engineering at research to practice in geotechnical engineering congress 2008. Reston, VA: American Society of Civil Engineers. doi:10.1061/40962(325)19
Мозговий, А. О., & Бутенко, А. А. (2022). Особливості конструкцій залізобетонних фундаментів силосів збільшених розмірів. Збірник наук. пр. [УкрДУЗТ]. Будівництво та цивільна інженерія, (199), 54–67. doi:10.18664/1994-7852.199.2022.258797
Bernardes, H. C., de Souza Filho, H. L., Dias, A. D., & da Cunha, R. P. (2021). Numerical Analysis of Piled Raft Foundations Designed for Settlement Control on Steel Grain Silos in Collapsible Soils. International Journal of Civil Engineering. doi:10.1007/s40999-020-00586-5
Дворник, А. М., Любченко, І. Г., Титарен-ко, В. А., & Шидловська, О. В. (2019). Ос-нови та фундаменти циліндричних силосів для зерна. Наука та будівництво, (3), 12-18.
Носенко В., & Кашоїда, О. (2021). Визначення напружено-деформованого стану групи паль шляхом числового мо-делювання їх взаємодії з основою за да-ними польових досліджень. Основи та фундаменти, (43), 87-100.
Підлуцький, В., & Литвин, О. (2020). Формування НДС у фундаментах зерно-сушильних комплексів при зміні парамет-рів грунтів. Основи та Фундаменти / Bases and Foundations, (41), 55–63. https://doi.org/10.32347/0475-1132.41.2020.55-63
Butenko, A. A., Mozgovyi, A. O., & Spirande, K. V. (2024). The improvement of the slab-ring foundation design with an un-der-silo gallery of a cylindrical steel silo on the grounds of the computer simulation re-sults and those of field observations. IOP Conference Series: Earth and Environmental Science, 1376(1), 012024. doi:10.1088/1755-1315/1376/1/012024
Dhaybi, M., Grzyb, A., Trunfio, R., & Pellet, F. (2012). Foundations reinforced by soil mixing: Physical and numerical approach. In Proc. of Intern. Symp.“Recent research, advances & execution aspects of ground improvement works (Vol. 3), 137-145.
Винников, Ю. Л., Харченко, М. О., &
Марченко, В. І. (2012). Розрахунок фун-даментної плити силосів на армованій стохастичній основі. Мости та тунелі: теорія,
дослідження, практика, 3, 26–32. doi:10.15802/bttrp2012/26411.
Ching, J. (2022). Is the scale of fluctuation the only important parameter in geotechnical spatial variability? Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society. 4531–4536.
Rebolledo, J. F. R., Santiago, I. M., Bernardes, H. C., & Mendes, T. A. (2022). Performance evaluation of rigid inclusions for settlement control of grain silos in tropical soils. Soils and Rocks, 45, e2022004822.
KMZ Industries. (б. д.). (2025). Силоси з плоским днищем. Взято з https://kmzindustries.ua/product/silosy-na-ploskom-osnovanii
Винников, Ю., Харченко, М., Марчен-ко, В., & Кічасов, О. (2023). Аналіз екс-плуатаційної придатності фундаментів споруд для зберігання зерна. Основи та Фундаменти / Bases and Foundations, 46, 63–72. doi:10.32347/0475-1132.46.2023.63-72
Марченко, В. І. (2012). Напружено-деформований стан армованих за буроз-мішувальною технологією слабких глини-стих основ з урахуванням чиннику часу. ПолтНТУ, 230.
Coduto, D. P., Kitch, W. A., & Yeung, M.-c. R. (2015). Foundation design: Principles and practices. Pearson.
ACI 313-16:2016 (2016) Design Specification for Concrete Silos and Stacking Tubes for Storing Granular Materials and Commentary. American Concrete Institute.
Makhinko, A., Makhinko, N. (2021). Stalevi yemnosti dlia zberihannia zerna. Kyiv: Vyd-vo «Stal» (in Ukrainian).
Fank, M. Z., Nascimento, J. W. B. d., Cardoso, D. L., Meira, A. S., & Willrich, F. L. (2018). Vertical pressures and compressive friction force in a large silo. Engenharia Agrícola, 38(4), 498–503. doi:10.1590/1809-4430-eng.agric.v38n4p498-503/2018
AS 3774 (1996) Loads on bulk containers. Sydney: Australian Standard.
Laier, J. E., Cowles, G. D. E., & White, M. E. (2008). Anatomy of foundation performance involving three grain silos systematically loaded to impending failure. Symposium honoring dr. john H. schmertmann for his contributions to civil engineering at research to practice in geotechnical engineering congress 2008. Reston, VA: American Society of Civil Engineers. doi:10.1061/40962(325)19
Mozghovyi, A.O., Butenko, A.A. (2022). Osoblyvosti konstruktsii zalizobetonnykh fundamentiv sylosiv zbilshenykh rozmiriv [The effective structures of reinforced con-crete foundation of syloses at grain transfer terminals]. Zbirnyk nauk. prats: Budivny-tstvo ta tsyvilna inzheneriia. UkrDUZT, 199, 54-67 (in Ukrainian).
Bernardes, H. C., de Souza Filho, H. L., Dias, A. D., & da Cunha, R. P. (2021). Numerical Analysis of Piled Raft Foundations Designed for Settlement Control on Steel Grain Silos in Collapsible Soils. International Journal of Civil Engineering. doi:10.1007/s40999-020-00586-5
Dvornyk, A.M., Liubchenko, I.H., Tytaren-ko, V.A. & Shydlovska, O.V. (2019). Osno-vy ta fundamenty tsylindrychnykh sylosiv dlia zerna [Bases and foundations for grain cylindrical silos]. Nauka ta budivnytstvo. Kyiv: NDIBK, 3, 12-18 (in Ukrainian).
Nosenko, V., Kashoida, O. (2021). Vyznachennia napryjeno-deformovanogo stany grypi pal shliahom chislovogo modeli-yvannia ih vzaie-modii z osnovoiy za dan-nimi poliovih doslidjen [Determination of the stress-strain state of group of piles by numerical simulation of their interac-tion with the base according to field research da-ta]. Osnovu ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyj zbirnyk. Kyiv: KNU-BA, 43, 87-100 (in Ukrainian).
Pidlutskyi, V.L., Lytvyn, O.V. (2020). Formuvannia NDS u fundamentakh zerno-sushylnykh kompleksiv pry zmini paramet-riv hruntiv [Formation of stress-strain state in the foundations of grain drying complexes when changing soil parameters]. Osnovy ta fundamenty: Mizhvidomchyj naukovo-tekhnichnyi zbirnyk. Kyiv: KNUBA, 41, 55-63 (in Ukrainian).
Butenko, A. A., Mozgovyi, A. O., & Spirande, K. V. (2024). The improvement of the slab-ring foundation design with an un-der-silo gallery of a cylindrical steel silo on the grounds of the computer simulation re-sults and those of field observations. IOP Conference Series: Earth and Environmental Science, 1376(1), 012024. doi:10.1088/1755-1315/1376/1/012024
Dhaybi, M., Grzyb, A., Trunfio, R., & Pellet, F. (2012). Foundations reinforced by soil mixing: Physical and numerical approach. In Proc. of Intern. Symp.“Recent research, advances & execution aspects of ground improvement works (Vol. 3), 137-145.
Vynnykov, Yu.L., Kharchenko, M.O., Marchenko, V.I. (2012). Rozrakhunok fun-damentnoi plyty sylosiv na armovanii sto-khastychnii osnovi [Design of foundation plate of grain silage on reinforced stochastic soil base]. Mosty ta tuneli: teoriia, doslidzhennia, praktyka. Dnipro: DNUZT, 3, 26-32 (in Ukrainian).
Ching, J. (2022). Is the scale of fluctuation the only important parameter in geotechnical spatial variability? Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society. 4531–4536.
Rebolledo, J. F. R., Santiago, I. M., Bernardes, H. C., & Mendes, T. A. (2022). Performance evaluation of rigid inclusions for settlement control of grain silos in tropical soils. Soils and Rocks, 45, e2022004822.
KMZ Industries. (b. d.). (2025). Sylosy z ploskym dnyshchem. Vziato z https://kmzindustries.ua/product/silosy-na-ploskom-osnovanii (date of request: 31.03.2025) (in Ukrainian).
Vynnykov, Y., Kharchenko, M., Marchenko, V., & Kichasov, O. (2023). Ser-viceability analysis of the grain storage fa-cilities foundations. Bases and Foundations, (46), 63–72. https://doi.org/10.32347/0475-1132.46.2023.63-72 (in Ukrainian).
Marchenko, V.I. (2012). Napruzheno-deformovanyi stan armovanykh za bu-rozmishuvalnoiu tekhnolohiieiu slabkykh hlynystykh osnov z urakhuvanniam chynnyku chasu [The stress-stain state of weak clay bases reinforced by drilling-mixing technology, taking into account the time factor]. Dys. kand. tekhn. nauk: 05.23.02. Poltava: PoltNTU, 230 (in Ukrain-ian).