Comparison of design features of recessed and unrecessed dual-purpose structures based on design experience
Main Article Content
Abstract
The study presents a comparison of the design features of recessed and unrecessed dual-purpose structures based on design experience. The purpose of the work is a comprehensive analysis of space-planning and structural solutions for dual-purpose structures, determination of the features of calculations and design, determination of conclusions and recommendations for further design.
The update of regulatory documents and the intensification of scientific research in the field of design and construction of protective structures in general were noted. Most of the research concerns the protection of critical infrastructure facilities, fortifications and special-purpose shelters. The modeling of such structures is based on a clearly defined task - the direct hit impact load, which depends on the type of threat. The number of studies on civilian shelters that must be designed in accordance with current regulatory requirements, where no direct hit design cases are provided, is currently limited.
Regulatory provisions and design experience have established that the space-planning solution of a dual-purpose building is determined, first of all, by the main functional purpose. In residential and public buildings, the most optimal option for the arrangement of dual-purpose structures is underground premises, which are primarily reserved for the storage of vehicles (parking lots).
Three dual-purpose structures were selected for analysis, differing in the features of their structural schemes, burial conditions, and the magnitude of the load from the blast wave. The modeling of each dual-purpose structure was performed in a spatial formulation in SCAD software, taking into account physical and geometric nonlinearities. The consideration of the loading from the blast wave action was realized by the quasi-static method.
It has been established that, in accordance with the regulatory provisions, the nature of the recess of a dual-purpose structure determines the calculated value of the load from the action of a shock blast wave, which in turn affects the stress-strain state of the structures. The change in the load magnitude is quantitatively different for the scheme with full recess, incomplete recess, and complete non-recess.
The obtained results demonstrate that from the point of view of effective design, recessed dual-purpose structures are more appropriate in contrast to partially recessed and completely unrecessed ones.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Про регулювання містобудівної діяльнос-ті. Закон України №3038-VI (2025) (Укра-їна) https://zakon.rada.gov.ua/laws/show/3038-17
Захисні споруди цивільного захисту із Змінами № 1 та №2: ДБН В.2.2-5:2023 (2023) [Чинний від 2023.11.01]. К.: Мініс-терство розвитку громад, територій та ін-фраструктури України.
Азізов, Т., Люльченко, В. & Орлова, О. (2024) Швидкоспоруджувана захисна спо-руда цивільного захисту. Екологічна без-пека та природокористування, 50, 78–87.
Веселов, М., Забєділіна, А. (2023) Цивіль-ний захист населення в умовах воєнного стану. Зовнішня торгівля: економіка, фі-нанси, право, 4, 98-114. https://doi.org/10.31617/3.2023(129)09
Коцюруба, В.І., Білик, А.С., Веретнов, А.О., Гайдарли, Г.С., Борта, Р.М. & Тер-тишний, Б.І. (2022) Методика розрахунків та обґрунтування вимог до інженерного захисту об’єктів критичної інфраструкту-ри від БпЛА типу баражуючий боєприпас. Опір матеріалів і теорія споруд: наук.-тех. збірник, 109. 164-183.
Сахаров, В., & Литвин, О. . (2023). Вплив вибухової ударної хвилі на покриття захи-сної споруди критичної інфраструктури. Основи та Фундаменти, 47, 107–114. https://doi.org/10.32347/0475-1132.47.2023.107-114
Носенко, В., & Нечипоренко, Д. (2024). Принципи побудови числових моделей для дослідження впливу імпульсних нава-нтажень на заглиблені споруди. Основи та Фундаменти, 49, 55–61. https://doi.org/10.32347/0475-1132.49.2024.55-61
Pro rehuliuvannia mistobudivnoi diialnos-ti. Zakon Ukrainy №3038-VI (2025) (in Ukrainian) https://zakon.rada.gov.ua/laws/show/3038-17#Text
Zakhysni sporudy tsyvilnoho zakhystu iz Zminamy № 1 ta №2: DBN V.2.2-5:2023 (2023) [Chynnyi vid 2023.11.01]. K.: Ministerstvo rozvytku hromad, terytorii ta infrastruktury Ukrainy. (in Ukrainian).
Azizov, T., Liulchenko, V. & Orlova, O. (2024) Shvydkosporudzhuvana zakhysna sporuda tsyvilnoho zakhystu [The prefabri-cated civil defense structure]. Ekolohichna bezpeka ta pryrodokorystuvannia, 50, 78–87. (in Ukrainian).
Veselov, M., Zabiedilina, A. (2023) Tsyvilnyi zakhyst naselennia v umovakh voiennoho stanu [Civilian protection of the population under martial law]. Zovnishnia torhivlia: ekonomika, fi-nansy, pravo, 4, 98-114. (in Ukrainian). https://doi.org/10.31617/3.2023(129)09
Kotsiuruba, V.I., Bilyk, A.S., Veretnov, A.O., Haidarly, H.S., Borta, R.M. & Tertyshnyi, B.I. (2022) Metodyka rozrakhunkiv ta obgruntuvannia vymoh do inzhenernoho zakhystu obiektiv krytychnoi infrastruktu-ry vid BpLA typu barazhuiuchyi boieprypas [Methodology for calculating and justifying requirements for engineering protection of critical infrastructure objects from UAVs of the barrage munition type]. Opir materialiv i teoriia sporud: nauk.-tekh. zbirnyk, 109. 164-183. (in Ukrainian).
Sakharov, V., & Lytvyn, O. (2023). Vplyv vybukhovoi udarnoi khvyli na pokryttia zakhy-snoi sporudy krytychnoi infrastruktury [Impact of an explosive shock wave on the covering of a critical infrastruc-ture protection structure]. Bases and Foundations, 47, 107–114. (in Ukrainian). https://doi.org/10.32347/0475-1132.47.2023.107-114
Nosenko, V., & Nechyporenko, D. (2024). Pryntsypy pobudovy chyslovykh modelei dlia doslidzhennia vplyvu impulsnykh navantazhen na zahlybleni sporudy [Principles of constructing numerical models for studying the impact of impulse loads on recessed structures]. Bases and Foundations, 49, 55–61. (in Ukrainian). https://doi.org/10.32347/0475-1132.49.2024.55-61