Efficiency of using an increased area grillage as part of a columnar pile foundation
Main Article Content
Abstract
In this paper, we propose to apply the idea of an integrated foundation used for slab grillage to a columnar pile foundation. In mass design, having determined the required number of piles based only on their bearing capacity, they try to place them in a pile as compactly as possible to reduce the cost of the grillage, whose work is not taken into account. If the piles are placed at a considerable distance from each other or compactly
placed under the column, but the grillage size is sufficiently large, this can compensate for the small number of piles by including the grillage in the work
The mathematical modelling of the pile foundation operation was performed using the SOFiSTiK software package. A study of the implementation of the pile foundation with a soil foundation was carried out, depending on the grillage size, length, number, placement of piles in the grillage and soil conditions. Homogeneous sandy and clayey foundation soil is considered. It is shown that in the case of using complex pile foundations with sparse pile placement and increased grillage area, the efficiency of the foundation as a whole and its individual elements increases. In order to save materials, it is possible to reduce the number of piles in a group while increasing the grillage size without losing the bearing capacity of the foundation. It is known that a pile is a much more expensive structure than a grillage, so reducing the number of piles while increasing the overall size of the grillage can lead to a more economical solution.
The mathematical modelling of the pile foundation operation using the SOFiSTiK software package confirmed the main conclusions on the distribution of forces between the elements of the pile foundation, obtained earlier by physical modelling on small-scale models and using the Plaxis 3D Foundation software package.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are published in this journal, agree to the following conditions:
Authors reserve the right to authorship of their work and transfer the journal the right of the first publication of this work under the terms of the Creative Commons Attribution License, which allows other persons to freely distribute published work with mandatory reference to authors original work and the first publication of work in this journal.
The authors have the right to enter into independent additional agreements on the non-exclusive dissemination of the work in the form in which it was published by this journal (for example, to post work in the electronic repository of the institution or to publish as part of a monograph), provided that the reference to the first publication of the work in this journal is maintained.
The journal's policy allows and encourages the authors to place the manuscript of the work on the Internet (for example, in the institutions' storehouses or on personal websites), both for presenting this manuscript to the editorial office and during its editorial processing, as this contributes to the creation of productive scientific discussion and positively affects the efficiency and dynamics of citing the published work (see The Effect of Open Access).
References
Muhammad Rehan Hakro, Aneel Kumar, Zaheer Almani, Mujahid Ali, Fahid Aslam, Roman Fediuk, Sergey Klyuev, Alexander Klyuev, & Linar Sabitov (2022). Numerical Analysis of Piled-Raft Foundations on Multi-Layer Soil Considering Settlement and Swell-ing. Вuildings, 12. 1-23.
Burland, J., Burbidge, M., Wilson, E., & Ter-zaghi, K. (1985). Settlement of Foundations on Sand and Gravel. Proc. Inst. Civ. Eng. 78. 1325–1381.
Ali, M., Abbas, S., Khan, M.I., Gad, M.A., Ammad, S., & Khan, A. (2020). Experi-mental Validation of Mander’s Model for Low Strength Confined Concrete Under Axi-al Compression. In Proceedings of the 2020 Second International Sustainability and Re-silience Conference: Technology and Inno-vation in Building Designs (51154). 1–6.
Mandolini, A., di Laora, R., & Mascarucci, Y. (2013). Rational Design of Piled Raft. Procedia Eng., 57. 45–52.
Кріпак, В. (2023). Комплексний плитно-пальовий фундамент. Будівельні кон-струкції. Теорія і практика, 1(13). 30-40.
Кріпак, В., & Бакур Хасіб. (1997). Особ-ливості розрахунку і проектування фун-даментної системи «З/б плита-грунтова основа-палі». Праці Міжнародної ювілей-ної конференції з питань надійності будівельних констр. Полтава.
Цимбал, С. Й., & Карцева, С. Л. (2004). Методика розрахунку пальових фунда-ментів з урахуванням роботи ростверку. Основи і фундаменти, вип. 28. 121-130.
Седін, В Л., Бікус, Е. М., Дюльдев, А. О., & Мельник, А. М. (2013). Впровадження комбінованого плитно-палевого фунда-менту в Україні на прикладі будівництва підземного паркінгу в м. Одеса. Збірник наукових праць (галузеве машинобудування, будівництво). Вип. 3(38). Т.2. 321-329.
Петренко, В. Д., Крисан, В. І., Крисан, В. В., & Чегодаєв, І. С. (2021). Досвід спо-рудження пальово-плитного фундаменту в складних інженерно-геологічних умовах. Збірник наукових праць «Мости та тунелі: теорія, дослідження, практика». №19. 78-84.
Самородов, О. В. (2015). Метод опти-мального проектування пальово-плитних фундаментів багатоповерхових будівель за гранично допустимими осіданнями. Науковий вісник будівництва. Вип. 1(79). 96-100.
Самородов, О. В. (2016). Нова кон-струкція плитно-пальового фундамента. Вісник Придніпровської державної академії будівництва та архітектури. Вип. 1 (214). 58-65.
Самородов, О., Табачніков, С., Дитюк, О., & Бондар, О. (2023). Польові до-слідження напруженого стану системи «грунтова основа – комбінований пальо-во-плитний фундамент» багатофункціо-нального комплексу у місті Харкові. Основи та фундаменти: науково-технічний збірник. Вип.46. 38-48.
Ana Cláudia Frade de Faria. (2017). Foundation solutions for large buildings us-ing combined piled-raft foundations. Engi-neering, Environmental Science. 10 р.
Katzenbach, R., & Choudhury, D. (2013). Combined Pile-Raft Foundation Guideline. ISSMGE. 23 p.
Katzenbach, R., & et al. (2009). Instru-mentationand Monitoring of a Piled Raft Foundation on Soft Soil. Proceedings of the 17th International Conference on Soil Me-chanics and Geotechnical Engineering. 1850-1853.
Balakumar, V., Min. J. Huang, Erwin Oh, Nilan S. Jayasiri, Richard Hwang, & Bal-asubramaniam, A. S. (2021). Piled Raft on Sandy Soil. An Observational Study. Ge-otechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 52 No. 3. 51-65.
Phung Duc. (2016). Long Prediction of Piled Raft Foundation Settlement. A Case Study. Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 47 No. 1. 1-6.
Wang, Y., et al. (2016). Experimental Study on the Stress State of Piled Raft Foun-dation sunder Different Loading Conditions. Journal of Zhejiang University-Science A (Applied Physics & Engineering). 1345-1356.
Elwakil, A. Z., & Azzam, W. R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Jour-nal. Volume 55, Issue 1. 547-560.
Lua Thi Hoang, & Tatsunori Matsumoto. (2020). Long-term behavior of piled raft foundation models supported by jacked-in piles on saturated clay. Soils and Founda-tions, 60 (2020). 198–217.
Fekadu Melese. (2022). Improved Per-formance of Raft Foundation Using De-tached Pile Columns in Loose Subsoil Condi-tions. Advances in Civil Engineering. Volume 2022(11). 18 p.
Irfan Jamil, Irshad Ahmad, Wali Ullah, Mahmood Ahmad, Mohanad Muayad Sabri Sabri, & Ali Majdi. (2022). Experimental Study on Lateral and Vertical Capacity of Piled Raft and Pile Group System in Sandy Soil. Applіеd Science. 2022, 12. 2-18.
Mostafa Elsawwaf, Marwan Shahien, Ahmed Nasr, & Alaaeldin Magdy. (2022). The behavior of piled rafts in soft clay: Nu-merical investigation. Journal of the Me-chanical Behavior of Materials 2022, 31. 426–434.
Маєвська, І. В., & Блащук, Н. В. (2023). Робота паль і ростверку у складі стовп-частих пальових фундаментів. Вінниця : ВНТУ.
Маєвська, І. В. Попович, М.М., Кремін-ська, Ю. О. (2022). Різниця в роботі ко-ротких і довгих паль у складі стовпчасто-го пальового фундаменту за результатами фізичного моделювання. Сучасні техно-логії, матеріали та конструкції в будів-ництві, №2(33). 108-118.
Маєвська, І. В., Блащук, Н. В., Кремін-ська, Ю. О. Особливості роботи пальових кущів з коротких паль за даними числово-го моделювання. Основи та фундаменти, вип.43. 30-39.
Маєвська, І. В., Ганущак, Ю. В. (2024). Математичне моделювання роботи ком-плексного стовпчастого пальового фун-даменту. Збірник матеріалів LІІІ Науково-технічної конференції підрозділів Вінниць-кого національного технічного універси-тету.https://conferences.vntu.edu.ua/index.php/all-fbtegp/all-fbtegp-2024/paper/view/20500/17070.
Основи та фундаменти споруд: ДБН В.2.1-10-2009. (2012) [Чинний від 2012-07-01 до 2019.01.01]. К.: Мінрегіонбуд України.
Основи та підвалини будинків і споруд. Грунти. Метод польових випробувань па-лями. ДСТУ Б В.2.1-1-95 (ГОСТ 5686-94). (1996) [Чинний від 1996-04-01]. К.: Мінрегіон України.
Muhammad Rehan Hakro, Aneel Kumar, Zaheer Almani, Mujahid Ali, Fahid Aslam, Roman Fediuk, Sergey Klyuev, Alexander Klyuev, Linar Sabitov (2022). Numerical Analysis of Piled-Raft Foundations on Multi-Layer Soil Considering Settlement and Swell-ing. Вuildings, 12. 1-23.
Burland, J., Burbidge, M., Wilson, E., Ter-zaghi, K. (1985). Settlement of Foundations on Sand and Gravel. Proc. Inst. Civ. Eng. 78. 1325–1381.
Ali, M., Abbas, S., Khan, M.I., Gad, M.A., Ammad, S., Khan, A. (2020). Experimental Validation of Mander’s Model for Low Strength Confined Concrete Under Axial Compression. In Proceedings of the 2020 Second International Sustainability and Re-silience Conference: Technology and Inno-vation in Building Designs (51154). 1–6.
Mandolini, A., di Laora, R., Mascarucci, Y. (2013). Rational Design of Piled Raft. Pro-cedia Eng., 57. 45–52.
Kripak, V. (2023). Kompleksnyi plytno-palovyi fundament [Complex slab and pile foundation]. Budivelni konstruktsii. Teoriia i praktyka, 1(13). 30-40. (in Ukrainian).
Kripak, V., Bakur Khasib. (1997). Osoblyvosti rozrakhunku i proektuvannia fundamentnoi systemy «Z/b plyta-hruntova osnova-pali». [Features of calculation and design of the foundation system «reinforced concrete slab-soil base-piles»]. Pratsi Mizhnarodnoi yuvileinoi konferentsii z pytan nadiinosti budivelnykh konstr. Poltava. (in Ukrainian).
Tsymbal, S. Y., Kartseva, S. L. (2004). Metodyka rozrakhunku palovykh fundamentiv z urakhuvanniam roboty rostverku. [Calculation methodology for pile foundations taking into account grillage op-eration]. Osnovy i fundamenty, vyp. 28. 121-130. (in Ukrainian).
Sedin, V L., Bikus, E. M., Diuldev, A. O., Melnyk, A. M. (2013). Vprovadzhennia kombinovanoho plytno-palevoho fundamen-tu v Ukraini na prykladi budivnytstva pi-dzemnoho parkinhu v m. Odesa. [Implemen-tation of a combined slab and pile founda-tion in Ukraine on the example of the con-struction of an underground car park in Ode-sa]. Zbirnyk naukovykh prats (haluzeve mashynobuduvannia, budivnytstvo). Vyp. 3(38). T.2. 321-329. (in Ukrainian).
Petrenko, V. D., Krysan, V. I., Krysan, V. V., Chehodaiev, I. S. (2021). Dosvid sporudzhennia palovo-plytnoho fundamentu v skladnykh inzhenerno-heolohichnykh umovakh. [Experience in the construction of pile-slab foundations in difficult engineering and geological conditions]. Zbirnyk naukovykh prats «Mosty ta tuneli: teoriia, doslidzhennia, praktyka». №19. 78-84. (in Ukrainian).
Samorodov, O. V. (2015). Metod optymalnoho proektuvannia palovo-plytnykh fundamentiv bahatopoverkhovykh budivel za hranychno dopustymymy osidanniamy. [Method of optimal design of pile-slab foundations of multi-storey build-ings by maximum permissible settlements]. Naukovyi visnyk budivnytstva. Vyp. 1(79). 96-100. (in Ukrainian).
Samorodov, O. V. (2016). Nova konstruktsiia plytno-palovoho fundamenta. [New design of the slab and pile founda-tion]. Visnyk Prydniprovskoi derzhavnoi akademii budivnytstva ta arkhitektury. Vyp. 1 (214). 58-65. (in Ukrainian).
Samorodov, O., Tabachnikov, S., & Dytiuk, O., Bondar, O. (2023). Polovi doslidzhennia napruzhenoho stanu systemy «hruntova osnova – kombinovanyi palovo-plytnyi fundament» bahatofunktsionalnoho kompleksu u misti Kharkovi. [Field studies of the stress state of the system ‘soil base - combined pile-slab foundation’ of a multi-functional complex in Kharkiv]. Osnovy ta fundamenty: naukovo-tekhnichnyi zbirnyk. Vyp.46. 38-48. (in Ukrainian).
Ana Cláudia Frade de Faria. (2017). Foundation solutions for large buildings us-ing combined piled-raft foundations. Engi-neering, Environmental Science. 10 р.
Katzenbach, R., & Choudhury, D. (2013). Combined Pile-Raft Foundation Guideline. ISSMGE. 23 p.
Katzenbach, R., et al. (2009). Instrumen-tationand Monitoring of a Piled Raft Founda-tion on Soft Soil. Proceedings of the 17th In-ternational Conference on Soil Mechanics and Geotechnical Engineering. 1850-1853.
Balakumar, V., Min. J. Huang, Erwin Oh, Nilan S. Jayasiri, Richard Hwang, & Bal-asubramaniam, A. S. (2021). Piled Raft on Sandy Soil. An Observational Study. Ge-otechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 52 No. 3. 51-65.
Phung Duc. (2016). Long Prediction of Piled Raft Foundation Settlement. A Case Study. Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 47 No. 1. 1-6.
Wang, Y., et al. (2016). Experimental Study on the Stress State of Piled Raft Foun-dation sunder Different Loading Conditions. Journal of Zhejiang University-Science A (Applied Physics & Engineering). 1345-1356.
Elwakil, A. Z., & Azzam, W. R. (2016). Experimental and numerical study of piled raft system. Alexandria Engineering Jour-nal. Volume 55, Issue 1. 547-560.
Lua Thi Hoang, & Tatsunori Matsumoto. (2020). Long-term behavior of piled raft foundation models supported by jacked-in piles on saturated clay. Soils and Founda-tions, 60 (2020). 198–217.
Fekadu Melese. (2022). Improved Per-formance of Raft Foundation Using De-tached Pile Columns in Loose Subsoil Condi-tions. Advances in Civil Engineering. Volume 2022(11). 18 p.
Irfan Jamil, Irshad Ahmad, Wali Ullah, Mahmood Ahmad, Mohanad Muayad Sabri Sabri, & Ali Majdi. (2022). Experimental Study on Lateral and Vertical Capacity of Piled Raft and Pile Group System in Sandy Soil. Applіеd Science. 2022, 12. 2-18.
Mostafa Elsawwaf, Marwan Shahien, Ahmed Nasr, & Alaaeldin Magdy. (2022). The behavior of piled rafts in soft clay: Nu-merical investigation. Journal of the Me-chanical Behavior of Materials 2022, 31. 426–434.
Maievska, I. V., & Blashchuk, N. V. (2023). Robota pal i rostverku u skladi stovpchastykh palovykh fundamentiv. [Oper-ation of piles and grillage as part of colum-nar pile foundations]. Vinnytsia: VNTU. (in Ukrainian).
Maievska, I. V. Popovych, M.M., & Kreminska, Yu. O. (2022). Riznytsia v roboti korotkykh i dovhykh pal u skladi stovpchastoho palovoho fundamentu za rezultatamy fizychnoho modeliuvannia. [Difference in the performance of short and long piles in a columnar pile foundation based on the results of physical modelling]. Suchasni tekhnolohii, materialy ta kon-struktsii v budivnytstvi, №2(33). 108-118. (in Ukrainian).
Maievska, I. V., Blashchuk, N. V., & Kreminska, Yu. O. Osoblyvosti roboty palo-vykh kushchiv z korotkykh pal za danymy chyslovoho modeliuvannia. [Peculiarities of operation of pile bushes from short piles ac-cording to numerical modelling]. Osnovy ta fundamenty, vyp.43. 30-39. (in Ukrainian).
Maievska, I. V., & Hanushchak, Yu. V. (2024). Matematychne modeliuvannia roboty kompleksnoho stovpchastoho palovoho fundamentu. [Mathematical mod-elling of a complex columnar pile founda-tion]. Zbirnyk materialiv LIII Naukovo-tekhnichnoi konferentsii pidrozdiliv Vinny-tskoho natsionalnoho tekhnichnoho univer-sytetu. https://conferences.vntu.edu.ua/index.php/all-fbtegp/all-fbtegp-2024/paper/view/20500/17070. (in Ukraini-an).
Osnovy ta fundamenty sporud: DBN V.2.1-10-2009. (2012) [Chynnyi vid 2012-07-01 do 2019.01.01]. K.: Minrehionbud Ukrainy. (in Ukrainian).
Osnovy ta pidvalyny budynkiv i sporud. Hrunty. Metod polovykh vyprobuvan paliamy. DSTU B V.2.1-1-95 (HOST 5686-94). (1996) [Chynnyi vid 1996-04-01]. K.: Minrehion Ukrainy. (in Ukrainian).