Assessment of displacements of retaining walls and surrounding buildings when constructing a deep excavation in dense urban areas

Main Article Content

Viktor NOSENKO
Artur MALAMAN

Abstract

A comparison of the results of geodetic monitoring of displacements of existing buildings and retaining wall structures and numerical simulation of the stress-strain state (SSS) of the system ‘soil - retaining walls - existing buildings’ during excavation in dense urban construction is presented.


Numerical simulation of the SSS system ‘soil - retaining walls - existing buildings’ was performed in a three-dimensional formulation, which makes it possible to correctly assess the system's SSS by taking into account the spatial stiffness of the structures.


It is shown that the direct use of soil parameters given in the report on engineering and geological surveys for numerical simulation of the SSS system ‘soil - retaining walls - existing buildings’ without their verification can lead to a significant 2-3.5 times higher error in determining the calculated values of displacements of structures and soils. Accordingly, there is a need to verify soil parameters.


The verification of soil parameters allows for good agreement between numerical simulation data and actual monitoring data.


A back analysis and verification of the soil model parameters were performed to ensure the convergence of the results of numerical simulation and field observations. It is recommended to refine the parameters of the soil model on the basis of laboratory studies of soil parameters in a wide range of loads/unloads using axial and triaxial soil compression.


An alternative method for verifying the design parameters of the soil model is to perform test pits to determine the actual values of retaining wall displacements and, based on the back analysis, refine the design parameters of the soil model to match the results of numerical simulation and actual measurements of structural displacements. The implementation of these recommendations makes it possible to bring the values of structural displacements predicted by numerical simulation closer to the actual values during construction work.

Article Details

How to Cite
NOSENKO, V., MALAMAN, A., & SOROKA, P. (2025). Assessment of displacements of retaining walls and surrounding buildings when constructing a deep excavation in dense urban areas. Bases and Foundations, (50), 192–199. https://doi.org/10.32347/0475-1132.50.2025.192-199
Section
Статті
Author Biographies

Viktor NOSENKO, Kyiv National University of Construction and Architecture

Head of the Department of Geotechnics

Candidate of technical sciences, Associate Professor

Artur MALAMAN, Kyiv National University of Construction and Architecture

postgraduate of the Department of Geotechnics

Pavlo SOROKA, Elster LLC

director

References

Bozkurt, S., Abed, A., & Karstunen, M. (2023). 2D & 3D numerical analyses of a deep excavation supported by LC columns (L. Zdravkovic, S. Kontoe, A. Tsiampousi, & D. Taborda, Eds.). In: 10th European Conference on Numerical Methods in Geotechnical Engineering (pp. 1-6). London: Imperial College London. https://doi.org/10.53243/NUMGE2023-188

Di Mariano, A., Arroyo, M., Gens, A., Amoroso, S., & Monaco, P. (2021). SDMT testing and its use in the numerical simulation of a deep excavation (T. Huszák, A. Mahler & E. Koch, Eds.). In: 6th International Conference on Geotechnical and Geophysical Site Characterization. Budapest: was held online. https://doi.org/10.53243/ISC2020-204

Dodigovic, F., Agnezovic, K., Ivandic, K., & Strelec S. (2022). An example of the protection of a deep excavation in an urban environment. Environmental Engineering, 9(1-2), 83-94. https://doi.org/10.37023/ee.9.1-2.9

Mitew-Czajewska, M. (2019). A study of displacements of structures in the vicinity of deep excavation. Archives of Civil and Mechanical Engineering, 19(2), 547-553. https://doi.org/10.1016/j.acme.2018.11.010

Носенко, В.С., Маламан, А.Р., & Сорока, П. (2024). Моніторинг за деформаціями огородження глибокого котловану та оточуючих будинків в умовах щільної міської забудови. Основи та фундаменти: Науково-технічний збірник, 49, 23-32.

DOI: 10.32347/0475-1132.49.2024.23-32

Bentley Systems. (2022). PLAXIS Material Models Manual: CONNECT Edition V22.01.

Schanz, T., Vermeer, P.A., & Bonnier P.G. (1999). The Hardening Soil Model: Formulation and Verification. Beyond 2000 in Computational Geotechnics – 10 years of Plaxis, 1, 281-296.

Yan, X., Tong, L., Li, H., Liu, W., Xiao, Yu., & Wang W. (2025). Effects of the excavation of deep foundation pits on an adjacent double-curved arch bridge. Underground Space, 21, 164-177. https://doi.org/10.1016/j.undsp.2024.09.001

Яковенко, М. (2021). Просторова модель та розвиток деформацій в часі за результатами геодезичного моніторингу підпірної стіни. InterConf, 51, 962-972.

https://ojs.ukrlogos.in.ua/index.php/interconf/article/view/11725

Bozkurt, S., Abed, A., & Karstunen, M. (2023). 2D & 3D numerical analyses of a deep excavation supported by LC columns (L. Zdravkovic, S. Kontoe, A. Tsiampousi, & D. Taborda, Eds.). In: 10th European Conference on Numerical Methods in Geotechnical Engineering (pp. 1-6). London: Imperial College London. https://doi.org/10.53243/NUMGE2023-188

Di Mariano, A., Arroyo, M., Gens, A., Amoroso, S., & Monaco, P. (2021). SDMT testing and its use in the numerical simulation of a deep excavation (T. Huszák, A. Mahler & E. Koch, Eds.). In: 6th International Conference on Geotechnical and Geophysical Site Characterization. Budapest: was held online. https://doi.org/10.53243/ISC2020-204

Dodigovic, F., Agnezovic, K., Ivandic, K., & Strelec S. (2022). An example of the protection of a deep excavation in an urban environment. Environmental Engineering, 9(1-2), 83-94. https://doi.org/10.37023/ee.9.1-2.9

Mitew-Czajewska, M. (2019). A study of displacements of structures in the vicinity of deep excavation. Archives of Civil and Mechanical Engineering, 19(2), 547-553. https://doi.org/10.1016/j.acme.2018.11.010

Nosenko, V.S., Malaman, A.R., & Soroka P. (2024). Monitorynh za deformatsiiamy ohorodzhennia hlybokoho kotlovanu ta otochuiuchykh budynkiv v umovakh shchilnoi miskoi zabudovy [Monitoring of deformations of the deep pit wall and surrounding buildings in dense urban areas]. Osnovy ta fundamenty: Naukovo-tekhnichnyi zbirnyk, 49, 23-32 (in Ukrainian).

DOI: 10.32347/0475-1132.49.2024.23-32

Bentley Systems. (2022). PLAXIS Material Models Manual: CONNECT Edition V22.01.

Schanz, T., Vermeer, P.A., & Bonnier P.G. (1999). The Hardening Soil Model: Formulation and Verification. Beyond 2000 in Computational Geotechnics – 10 years of Plaxis, 1, 281-296.

Yan, X., Tong, L., Li, H., Liu, W., Xiao, Yu., & Wang W. (2025). Effects of the excavation of deep foundation pits on an adjacent double-curved arch bridge. Underground Space, 21, 164-177. https://doi.org/10.1016/j.undsp.2024.09.001

Yakovenko, M. (2021). Prostorova model ta rozvytok deformatsii v chasi za rezultatamy heodezychnoho monitorynhu pidpirnoi stiny [Spatial model and development of deformations in time based on the results of geodetic monitoring of a retaining wall]. InterConf, 51, 962-972 (in Ukrainian).

https://ojs.ukrlogos.in.ua/index.php/interconf/article/view/11725